期刊文献+

微细通道尺寸对甲醇水蒸汽重整反应性能影响 被引量:2

Effect of Microchannel Size on Performance of Methanol Steam Reforming
下载PDF
导出
摘要 针对微细通道反应器内甲醇水蒸汽重整制氢反应,建立了二维稳态多组分传输反应模型。分析了通道几何尺寸的变化对产物的组成以及通道内部温度分布的影响。结果表明,通道长高比的增加能增强通道壁面与流体的换热性能,提高甲醇转化率和产物中氢含量,但同时也会造成产物中 CO 含量的增加,影响到质子交换膜燃料电池的正常工作。 A two-dimensional, steady-state, mutil-component transport ano reaction model was established for hydrogen production by methanol steam reforming in a micro-channel reactor. Effects of the reactor channel geometry on the reformate composition and the temperature distribution in the channel was analyzed by numerical simulation method. The results showed that the heat transfer between the wall and the reaction fluid could be enhanced with the increase of the channel length to height ratio, consequently the methanol conversion and hydrogen concentration in the reformate were also improved. At the same time, however, more CO would be produced, which is harmful to the operation of Proton Exchang Membrane Fuel Cell (PEMFC).
出处 《化学反应工程与工艺》 EI CAS CSCD 北大核心 2007年第1期19-23,共5页 Chemical Reaction Engineering and Technology
基金 国家自然科学基金资助项目(50276073) 重庆市自然科学基金资助项目(CSTC2006BB6221)
关键词 微通道反应器 甲醇水蒸汽重整 制氢 数值模拟 质子交换膜燃料电池 micro-channel reactor methanol steam reforming hydrogen production numerical simulation Proton Exchang Membrane Fuel Cell
  • 相关文献

参考文献10

  • 1Lim M S, Kim M R, Noh J, et al. A Plate-Type Reactor Coated with Zirconia-Sol and Catalyst Mixture for Methanol Steam-Reforming. Journal of Power Sources, 2005, 140 (4): 66-71
  • 2Won J Y, Jun H K, Jeon M K, et al. Performance of Microchannel Reactor Combined with Combustor for Methanol Steam Reforming. Catalysis Today, 2006, 111 (3) :158-163
  • 3Park G G, Seo D J, Park S H, et al. Development of Microchannel Methanol Steam Reformer. Chemical Engineering Journal,2004, 101 (3): 87-92
  • 4Park G G, Yim S G, Yoon Y G, et al. Hydrogen Production with Integrated Microchannel Fuel Processor for Portable Fuel Cell Systems. Journal of Power Sources, 2005, 145 (1): 702-706
  • 5Hollanday J D, Jones E O, Phelps M, et al. Microfuel Processor for Use in a Miniature Power Supply. Journal of Power Sources,2002, 108 (1): 21-27
  • 6Pan L W, Wang S D. Methanol Steam Reforming in a Compact Plate-Fin Reformer for Fuel-Cell Systems. International Journal of Hydrogen Energy, 2005, 30 (9): 973-979
  • 7Pan L W, Wang S D. Modeling of a Compact Plate-Fin Reformer for Methanol Steam Reforming in Fuel Cell Systems. Chemical Engineering Journal, 2005, 108 (2): 51-58
  • 8Yu H X, Tu S T, WANG Z D, et al. Development of a Microchannel Reactor Concerning Steam Reforming of Methanol. Chemical Engineering Journal, 2006, 116 (2): 123-132
  • 9袁彪,于新海,王正东,涂善东.在涂层催化剂上甲醇水蒸气重整的本征动力学研究[J].石油化工,2005,34(11):1055-1059. 被引量:4
  • 10Agrell J, Birgersson H, Boutonnet M. Steam Reforming of Methanol over a Cu/ZnO/Al2O3 Catalyst: a Kinetic Analysis and Strategies for Suppression of CO Formation. Journal of Power Sources, 2002, 106 (2) : 249-257

二级参考文献13

  • 1Cacciola G, Antonucci V, Freni S. Technology up Date and New Strategies on Fuel Cells. J Power Sources,2001,100:67 ~ 79.
  • 2Ogden J M, Steinbugler M M, Kreutz T G. A Comparison of Hydrogen, Methanol and Gasoline as Fuels for Fuel Cell Vehicles: Implications for Vehicle Design and Infrastructure Development. J Power Sources, 1999,79:143 ~ 168.
  • 3Hollady J D, Jones E O, Phelps M, et al. Microfuel Processor for Use in a Miniature Power Supply. J Power Sources,2002,108: 21 ~ 27.
  • 4Patil A S, Dubois T G, Sifer N, et al. Portable Fuel Cell Systems for America's Army: Technology Transition to the Field. J Power Sources, 2004,136:220 ~ 225.
  • 5Park G, Seo D J, Park S H, et al. Development of Microchannel Methanol Steam Reformer. Chem Eng J,2004,101:87 ~ 92.
  • 6Pour V, Barton J, Benda A. Kinetics of Catalyzed Reaction of Methanol with Water Vapour. Collect Czech Chem Commun, 1975,40:2 923 ~ 2 934.
  • 7Kobayashi H, Takezawa N, Minochi C. Methanol Reforming Reaction over Copper- Containing Mixed Oxides. Chem Lett, 1976,12:1 347 ~ 1 350.
  • 8Takahashi K, Kobayashi H, Takezawa N. On the Difference in Reaction Pathways of Steam Reforming of Methanol over Opper - Silica and Platinum -Silica Catalysts. Chem Lett, 1985,6:759 ~ 762.
  • 9Su T B, Rei M H. Steam Reforming of Methanol over Nickel and Copper Catalysts. J Chin Chem Soc, 1991,38:535 ~ 541.
  • 10Jiang C J,Trimm D L,Wainwright M S,et al. Kinetic Study of Steam Reforming of Methanol over Copper - Based Catalysts. Appl Catal,A,1993,93(2) :245 ~255.

共引文献3

同被引文献18

  • 1袁彪,于新海,王正东,涂善东.在涂层催化剂上甲醇水蒸气重整的本征动力学研究[J].石油化工,2005,34(11):1055-1059. 被引量:4
  • 2田智威,邹春,刘红娟,陈胜,柳朝晖,郑楚光.格子Boltzmann方法模拟层流对冲预混火焰[J].燃烧科学与技术,2005,11(6):539-542. 被引量:4
  • 3PEPPLEY B A, AMPHLETT J C, KEARNS L M, et al. Methanol steam reforming on Cu/ZnO/Al2O3 part1: the reaction network [J]. Applied Catalysis A, 1999, 179(1): 21-29.
  • 4PEPPLEY B A, AMPHLETT J C, KEARNS L M, et al. Methanol steam reforming on Cu/ZnO/Al2O3 part2: a comprehensive Kinetic model [J]. Applied Catalysis A, 1999, 179(1):31-49.
  • 5ZANFIR M, GAVRIILIDIS A. Modeling of catalytic plate reactor for dehydrogenation-combustion coupling [J]. Chemical Engineering Science, 2001, 56 (8) 2671-2683.
  • 6AGRELL J, BIRGERSSON H, BOUTONNET M. Steam reforming of methanol over a Cu/Zno/Al2O3 Catalyst, a Kinetic analysis and strategies for suppression of CO formation [J]. Journal of Power Sources, 2002, 106(2): 249-257.
  • 7SUCCI S, BELLA G, PAOETTI F. Lattice kinetic theory for numerical combustion [J]. Journal of Scientific Computing, 1997, 12(4): 395-408.
  • 8FILIPPOVA O, HANEL D. A novel lattice BGK approach for low Mach number combustion [J]. Journal of Computational Physics, 2000, 158 (2):139-160.
  • 9YAMAMOTO L, HE X, DOOLEN G D. Simulation of combustion field with lattice Boltzmann method [J]. Journal of Statistical Physics, 2002, 107(1/2) : 367-383.
  • 10CHEN S, LIU Z H, ZHANG C, et al. A novel coupled lattice Bohzmann model for low Mach number combustion simulation [J]. Applied Mathematics and Computation, 2007, 87(3) : 1-19.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部