期刊文献+

色散方程的交替分组迭代方法 被引量:4

The alternating group iterative method for the dispersive equation
下载PDF
导出
摘要 给出了求解具有周期边界条件色散方程近似解的交替分组迭代法.构造了逼近色散方程的两层隐式差分格式,以此隐式差分格式为基础设计出一种适合在并行机上进行计算的交替分组迭代方法,并证明了上述隐式差分格式的绝对稳定性和交替分组迭代过程的收敛性.数值试验对色散方程的隐格式与Crank-Nicolson格式分别应用交替分组迭代求解.结果表明,该方法具有很好的数值精度和良好的实用性. The alternating group iterative method for the dispersive equation with periodic boundary condition is presented. A two-level implicit difference scheme is designed, and an alternating group iterative method is suggested which is capable of parallelism on parallel computer. In addition, unconditional stability of the difference scheme and convergence of the iterative process are proved. The alternating group iterative method is used to solve the implicit scheme and the Crank-Nicolson scheme of the dispersive equation. The results show that this method has good accuracy and practicability.
作者 刘洪华
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2007年第1期19-23,27,共6页 Journal of Shandong University(Natural Science)
基金 国家自然科学基金资助项目(10671113) 山东省自然科学基金资助项目(Y2003A04)
关键词 色散方程 交替分组迭代方法 绝对稳定 并行计算 dispersive equation alternating group iterative method unconditionally stable parallel computation
  • 相关文献

参考文献8

  • 1林鹏程.色散方程的一类具高稳定性二层显格式.应用数学和力学,1988,9(9):219-223.
  • 2黎益 李北杰.关于色散方程的两个显式差分格式.计算数学,1986,8(3):275-280.
  • 3王文洽.色散方程的一类新的并行交替分段隐格式[J].计算数学,2005,27(2):129-140. 被引量:21
  • 4Shaohong Zhu.The alternating segment explicit-implicit scheme for the dispersive equation[J].Applied Mathematics Letters,2001,14:657 ~ 662.
  • 5金承日.RLW方程的AGEI方法[J].哈尔滨工业大学学报,2001,33(5):641-643. 被引量:2
  • 6张宝林,袁国兴.偏微分方程的并行有限差分方法[M].北京:科学出版社,1994.
  • 7David J Evans,Hasan Bulut.The numerical solution of the telegraph equation by the alternating group explicit (AGE) method[J].International Journal of Computer Mathematics,2003,80(10):1 289~ 1 297.
  • 8D J Evans.Group explicit iterative nethods for solving large linear systems[J].J Comp Math,1985,17:81 ~ 108.

二级参考文献8

共引文献21

同被引文献18

  • 1黎益.色散方程的四点显式差分格式[J].应用数学和力学,1993,14(3):219-223. 被引量:7
  • 2王文洽.色散方程的一类新的并行交替分段隐格式[J].计算数学,2005,27(2):129-140. 被引量:21
  • 3ZHU S H, YUAN G W, SHEN L J. Alternating group explicit method for the dispersive equation[J]. Internat J Comput Math, 2000, 75(1) :97-105.
  • 4ZTIU S H, ZHAO J. The alternating segment explicit-implicit method for the dispersive equation[J]. Applied Mathematics Letters, 2001, 14(6) :657-662.
  • 5KELLOGG R B. An alternating direction method for operator equations[J]. J Soc Indust Appl Math, 1964, 12(4):848-854.
  • 6ZHU S H, YUAN G W, SHEN L J. Alternating group explicit method for the dispersive equation [J ]. Internat J Comput Math, 2000, 75(1):97-105.
  • 7ZHU S H, ZHAO J. The alternating segment explicit-implicit method for the dispersive equation [J]. Applied Mathematics Letters, 2001, 14(6) :657-662.
  • 8KELLOGG R B. An alternating direction method for operator equations [ J ]. J Soc Indust Appl Math, 1964, 12 (4) :848-854.
  • 9冯青华.四阶抛物方程的一类交替分组方法[J].山东大学学报(理学版),2007,42(8):79-82. 被引量:4
  • 10QIN M Z. Difference schemes for the dispersive equation[J]. Computing, 1983, 31(3):261-267.

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部