期刊文献+

四阶非线性奇异抛物方程的半离散有限元方法的后验误差估计

A POSTERIORI ERROR ESTIMATION WITH FINITE ELEMENT SEMI-DISCRETE METHODS FOR FOURTH ORDER NONLINEAR SINGULAR PARABOLIC EQUATIONS
下载PDF
导出
摘要 对非线性奇异抛物方程考虑用P次多项式基得到半离散有限元方法的后验误差估计,这种误差估计是通过解局部抛物方程在每一离散单元上用P+1次多项式对解进行校正而得到的,其中P+1次多项式在节点上为零。 A posteriori error estimates for semi - discrete finite element methods using a pth degree polynomial basis were considered for nonlinear singular parabolic equations. The error estimates were obtained by solving local parabolic equations for corrections to the solutions on each element using a p + 1 st degree polynomial, which is zero at the nodes.
出处 《内蒙古农业大学学报(自然科学版)》 CAS 2007年第1期177-182,共6页 Journal of Inner Mongolia Agricultural University(Natural Science Edition)
关键词 后验误差估计 有限元方法 半离散近似 posteriori error estimation finite element method semi - discrete method
  • 相关文献

参考文献4

  • 1K.Segeth,A podteriori error estimation with finite element method of lines for a nonlinear parabolic equation in one space dimension.Numer.Math.1999,83:455 -475.
  • 2P.K.Moore,A posteriori error estimation with finite element semi and fully discrete methods for nonlinear parabolic equations in one space dimension.SIAM.J.Numer.Anal.1994,131 (1):149-169.
  • 3K.Eriksson,C.Johrson,Adaptive finite element methods for parabolicproblems Ⅳ:Nonlinear problems.SIAM.J.Numer.Anal.1995,32(6):1729 -1749.
  • 4V.thomee.Galerkin Finite Element Methods for parabolic problems[M].世界图书出版公司北京公司,2003,210-213.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部