期刊文献+

Symmetry Breaking for Black-Scholes Equations 被引量:1

Symmetry Breaking for Black-Scholes Equations
下载PDF
导出
摘要 Black-Scholes equation is used to model stock option pricing. In this paper, optimal systems with one to four parameters of Lie point symmetries for Black-Scholes equation and its extension are obtained. Their symmetry breaking interaction associated with the optimal systems is also studied. As a. result, symmetry reductions and corresponding solutions for the resulting equations are obtained.
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2007年第6期995-1000,共6页 理论物理通讯(英文版)
基金 The project supported by National Natural Science Foundation of China under Grant No. 10371098 and Program for New Century Excellent Talents in Universities (NCET)
关键词 Black-Scholes equation SYMMETRY optimal system symmetry breaking SOLUTION Black-Scholes方程 对称性破缺 最优系统 期权定价
  • 相关文献

参考文献22

  • 1F.Black and M.Scholes,J.Polit.Econ.81 (1973) 637.
  • 2R.C.Merton,Bell.J.Econ.Manag.Sci.4 (1973) 141.
  • 3P.Wilmott,S.Howison,and J.Dewynne,The Mathematics of Financial Derivatives,A Student Introduction,Cambridge University Press,Cambridge (2002).
  • 4M.R.Rodrigo and R.S.Mamon,Appl.Math.Lett.19(2006) 398.
  • 5R.Frey,Perfect Option Replication for a Large Trader,Ph.D.Thesis,ETH,Zurich (1996).
  • 6R.Frey,Market Illiquidity as a Source of Model Risk in Dynamic Hedging,Model Risk,Risk Publication,London(2000) 125 136.
  • 7R.Frey and A.Stremme,Math.Finance 7 (1997) 351.
  • 8L.A.Bordag,Symmetry Reductions of a Nonlinear Option Pricing Model,arxiv.math.AP/0604207 (2006).
  • 9P.J.Olver,Applications of Lie Groups to Differential Equations,Springer,New York (1986).
  • 10G.W.Bluman and S.Kumei,Symmetries and Differential Equations,Springer,New York (1989).

同被引文献14

  • 1Bluman G W, Kumei S. Symmetries and Differential Equations[M]. New York: Springer, 1989.
  • 2Olver P J. Application of Lie Groups to Differential Equations[M]. New York: Springer, 1993.
  • 3Lie S. Uber die integration durch bestimmte integrals yon einer klasse linearer partiller differential gleichun- gen[J]. Archiv der Mathematik, 1881, 6(3): 328-368.
  • 4Fushchych W I, Zhdanov R Z. Anti-reduction of the nonlinear wave equati0n[J]. Proceeding of the Academy Sciences, Ukraine, 1993, 11(1): 37-44.
  • 5Zhdanov R Z. Conditional Lie-Bicklund symmetry and reduction of evolution equation[J]. Journal of Physics A: Mathematical and General, 1995, 28(47): 3841-3850.
  • 6Fokas A S, Liu Q M. Nonlinear interaction of traveling waves of nonintegrable equations[J]. Physical Review Letters, 1994, 72(21): 3293-3296.
  • 7Galaktionov V A, Svishchevshii S R. Exact Solutions and Invariant Subspaces of Nonlinear Partial Differ- ential Equations in Mechanics and Physics[M]. London: Chapman and Hall, 2007.
  • 8Miller W. Mechanism for Variable Separation in Partial Differential Equations and Their Relationship to Group Theory[M]. London: World Scientific, 1989.
  • 9Qu C Z, Zhang S L, Liu R C. Separation of variables and exact solutions to quasilinear diffusion equations with nonlinear source[J]. Physica D: Nonlinear Phenomena, 2000, 144(1-2): 97-123.
  • 10Pucci E, Saccomandi G. Evolution equations invariant surface conditions and functional separation of variables[J]. Physica D: Nonlinear Phenomena, 2000, 139(1-2): 28-47.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部