Symmetry Breaking for Black-Scholes Equations
被引量:1
Symmetry Breaking for Black-Scholes Equations
摘要
Black-Scholes equation is used to model stock option pricing. In this paper, optimal systems with one to four parameters of Lie point symmetries for Black-Scholes equation and its extension are obtained. Their symmetry breaking interaction associated with the optimal systems is also studied. As a. result, symmetry reductions and corresponding solutions for the resulting equations are obtained.
基金
The project supported by National Natural Science Foundation of China under Grant No. 10371098 and Program for New Century Excellent Talents in Universities (NCET)
参考文献22
-
1F.Black and M.Scholes,J.Polit.Econ.81 (1973) 637.
-
2R.C.Merton,Bell.J.Econ.Manag.Sci.4 (1973) 141.
-
3P.Wilmott,S.Howison,and J.Dewynne,The Mathematics of Financial Derivatives,A Student Introduction,Cambridge University Press,Cambridge (2002).
-
4M.R.Rodrigo and R.S.Mamon,Appl.Math.Lett.19(2006) 398.
-
5R.Frey,Perfect Option Replication for a Large Trader,Ph.D.Thesis,ETH,Zurich (1996).
-
6R.Frey,Market Illiquidity as a Source of Model Risk in Dynamic Hedging,Model Risk,Risk Publication,London(2000) 125 136.
-
7R.Frey and A.Stremme,Math.Finance 7 (1997) 351.
-
8L.A.Bordag,Symmetry Reductions of a Nonlinear Option Pricing Model,arxiv.math.AP/0604207 (2006).
-
9P.J.Olver,Applications of Lie Groups to Differential Equations,Springer,New York (1986).
-
10G.W.Bluman and S.Kumei,Symmetries and Differential Equations,Springer,New York (1989).
同被引文献14
-
1Bluman G W, Kumei S. Symmetries and Differential Equations[M]. New York: Springer, 1989.
-
2Olver P J. Application of Lie Groups to Differential Equations[M]. New York: Springer, 1993.
-
3Lie S. Uber die integration durch bestimmte integrals yon einer klasse linearer partiller differential gleichun- gen[J]. Archiv der Mathematik, 1881, 6(3): 328-368.
-
4Fushchych W I, Zhdanov R Z. Anti-reduction of the nonlinear wave equati0n[J]. Proceeding of the Academy Sciences, Ukraine, 1993, 11(1): 37-44.
-
5Zhdanov R Z. Conditional Lie-Bicklund symmetry and reduction of evolution equation[J]. Journal of Physics A: Mathematical and General, 1995, 28(47): 3841-3850.
-
6Fokas A S, Liu Q M. Nonlinear interaction of traveling waves of nonintegrable equations[J]. Physical Review Letters, 1994, 72(21): 3293-3296.
-
7Galaktionov V A, Svishchevshii S R. Exact Solutions and Invariant Subspaces of Nonlinear Partial Differ- ential Equations in Mechanics and Physics[M]. London: Chapman and Hall, 2007.
-
8Miller W. Mechanism for Variable Separation in Partial Differential Equations and Their Relationship to Group Theory[M]. London: World Scientific, 1989.
-
9Qu C Z, Zhang S L, Liu R C. Separation of variables and exact solutions to quasilinear diffusion equations with nonlinear source[J]. Physica D: Nonlinear Phenomena, 2000, 144(1-2): 97-123.
-
10Pucci E, Saccomandi G. Evolution equations invariant surface conditions and functional separation of variables[J]. Physica D: Nonlinear Phenomena, 2000, 139(1-2): 28-47.
-
1毕玉升,王效俐.商业银行次级债定价研究[J].金融理论与实践,2007(4):13-15. 被引量:1
-
2米黎钟,毕玉升,王效俐.商业银行次级债定价研究[J].管理科学,2007,20(2):61-66. 被引量:5
-
3田明.Black-Scholes方程的一种新的证明思路和方法[J].上海工程技术大学学报,2007,21(3):196-198.
-
4关莉,李耀堂.修正的Black-Scholes期权定价模型[J].云南大学学报(自然科学版),2001,23(2):84-86. 被引量:11
-
5姜礼尚,梁进.金融衍生品和信用风险定价的数学模型[J].数学建模及其应用,2012,1(2):15-18. 被引量:1
-
6王素琴,安琪.利用币制替换简化Black-Scholes方程[J].商场现代化,2008(14):399-399.
-
7陈晓杰,黄志刚.基于B-S模型的股票指数期货定价研究[J].山东财政学院学报,2007(5):32-36.
-
8鲍健强,林炳煌.物质世界演化机制:从对称性到对称性破缺[J].浙江社会科学,2010(2):80-86. 被引量:2
-
9范宏高.期权定价的n叉树模型[J].湖北师范学院学报(自然科学版),2015,35(4):16-19.
-
10顾忆菲.现阶段事业单位公务卡报销方式对比及改善策略[J].财经界,2015,0(23):57-57.