期刊文献+

Star网络的限制边连通度 被引量:3

Restricted edge-connectivity of star graphs
下载PDF
导出
摘要 Star网络被认为是超立方体网络的良好替代.而限制边连通度作为传统边连通度的推广是互连网络容错性的一个重要度量.通过考察一些Star网络的拓扑性质,证明了当n≥4时,它的限制边连通度是2n-4. The Star network, an attractive alternative to the hypercube network, is one of the important structures for interconnection networks. As a generalization of classical edgeconnectivity, the restricted edge-connectivity can provide a more accurate measure of faulttolerance for interconnection networks. In this paper, we investigate the fault-tolerant properties of Star network, and prove that for the n-Star graph Sn, its restricted edge- connectivity is 2n-4 for n≥4.
出处 《山东理工大学学报(自然科学版)》 CAS 2007年第3期12-14,共3页 Journal of Shandong University of Technology:Natural Science Edition
基金 国家自然科学基金资助项目(60574075) 陕西省自然科学研究项目(2004A02)
关键词 限制边连通度 Star网络 超立方体网络 restricted edge-connectivity star networks hypercube networks
  • 相关文献

参考文献7

  • 1Esfahanian A H,Hakimi S L.On computing a conditional edge-connectivity of a graph[J].Information Processing Letters,1988,27:195-199.
  • 2Bondy J A,Murty U S R.Graph Theorey with Applications[M].New York:North Holland,1976.
  • 3Esfahanian A H,Generalized measures of fault tolerance with application to n-cube networks[J].IEEE Trans.Comput,1989,38(11):1 586-1 591.
  • 4Day K,Triphi A.A comparative study of topological properties of hypercubes and star graphs[J].IEEE Trans.Parallel and Distributed Systems,1994,5(1):31-38.
  • 5Akers S B,Horel D,Krisnamurthy B.A group theoretic model for symmetric interconnection networks[J].IEEE Trans.Comput,1989,38(4):555-566.
  • 6Hu S C,Yang C B.Fault tolerance on star graphs[J].IEEE Trans.Comput,1995,17:176-182.
  • 7聂晓冬,刘红美,徐俊明.Star图互连网络的容错性分析[J].数学物理学报(A辑),2004,24(2):168-176. 被引量:1

二级参考文献15

  • 1Akers S B, Harel D. Krishnamurthy B. The Star Graph. an Attrative Alternative to the n-Cube. Proc Internet Conf on Pararllel Processing. Berlin:Sprnger-Verlag. 1987. 393-400.
  • 2Akers SB, Krisnamurthy B. Agroup theoretic model for symmetricinterconnection networks. IEEE Trans Comput, 1989, 38(4): 555 566.
  • 3Krishnamoorthy M S. Krishnamurthy B. Fault diameter of interconnection networks. Comput Math Appl, 1987.13:577 - 582.
  • 4Latifi S. On the fault diameter of the star graph. Inform Process Lett. 1993, 46:143 - 150.
  • 5Esfahanian A H, HakimiSL. On computing a condition edge. Inform Process Lett 1988. 27:195-199.
  • 6Esfahanian A H. Generalized measures of fault torelance with application to N-cube networks. IEEE Trans Comput, 1989, 38:1586-1591.
  • 7Latifi S. Combinatorial Analysis of the Fault diameter of the n-cube. IEEE Trans Comput, 1993. 42:27-33.
  • 8Li Qiao, Zhang Yi. Restricted connectivity and restricted fault diameter of some inierconnection networks. DIMACS series in Discrete Mathematics and Theoretic Computer Science. 1995, 21: 267-273.
  • 9Bondy J A, Murty U S R. Graph Theory with Applications. New York: North Holland, 1979.
  • 10Day K, Trapathi A. A comparative study of topological properties of hypercubes and star graphs. IEEE Trans Parallel Distributed Systems. 1994. 5(1): 31-38.

同被引文献23

  • 1王雷 林亚平.基于超立方体环连接Petersen图互连网络研究.计算机学报,2007,9(6):339-343.
  • 2Gunasekaran R, Siddharth S, Krishnaraj P, et al.Efficient algorithms to solve broadcast scheduling problem in WiMAX mesh networks[J].Computer Communications, 2010,33 ( 11 ) : 1325-1333.
  • 3Stewart I A,Xiang Yonghong.Bipanconnectivity and bipancyclicity in k-ary n-cubes[J].IEEE Transactions on Parallel and Distributed Systems, 2009,20 ( 1 ) : 25-33.
  • 4Walker D, Latifi S.Improving bounds on link failure tolerance of the star graph[J].Information Sciences, 2010,180 ( 13 ) : 2571-2575.
  • 5Abdol-Hossein E, Louis H S.On computing a conditional edge-connectivity of a graph[J].Information Processing Letters, 1988,27(4) : 195-199.
  • 6Fabrega J, Fiol M.A.Extraconnectivity of graphs with large girth[J]. Discrete Mathematics, 1994,127( 1/3 ) : 163-170.
  • 7Wang Shiying, Yuan Jun, Liu Aixia.k-restricted edge connectivity for some interconnection networks[J].Applied Mathematics and Computation, 2008,201 ( 1/2) 587-596.
  • 8Ou Jianping, Cheng Xiaohong, Wu Jichang.On 3-restricted edge connectivity of undirected binary Kautz graphs[J].Discrete Mathematics, 2009,309(4) : 629-638.
  • 9Wang Shiying, Lin Shangwei.The k-restricted edge connectivity of undirected Kautz graphs[J].Discrete Mathematics, 2009, 309 (13) :4649-4652.
  • 10Maeda H,Masuda M,Panov T.Torus graphs and simplicial posets[J].Advances in Mathematics,2007,212(2):458-483.

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部