期刊文献+

基于小波的回归分析 被引量:1

The regression analysis based on wavelet
下载PDF
导出
摘要 在变形回归分析处理前消除或减弱误差的影响,可以有效地改善回归分析的质量.通过一元回归试验对比可以看出,经过小波消噪以后,线性关系之外因素引起的数据波动性减小,拟合的效果得到了改善,线性关系显著增强. The method of regression analysis is an important tool for deformation. The observed signal of deformation is often non-stationary. It possibly includes spike signal, mutation signal and non-stationary white noise. They often have high frequencies. The method of wavelet can detect error and remove it. It can eliminate or minimize the error's influence before deformation data analysis by regression. It can efficiently improve the quality of regression analysis. By comparison tests with monolinear regression, it can be found that the volatilities of data caused by factors without linear relation are reduced. The effect of fitting is improved. Linear relation is enhanced.
出处 《山东理工大学学报(自然科学版)》 CAS 2007年第3期40-42,共3页 Journal of Shandong University of Technology:Natural Science Edition
关键词 小波分析 回归分析 消噪 奇异性 wavelet analysis regression analysis de-noising singularity
  • 相关文献

参考文献3

二级参考文献5

  • 1Schneider. On the Uncertainty of Local Shape of Lines and Surfaces.International Journal of Geographical Information Science, 2001, 28(4): 237 - 247.
  • 2Godchild, M. F. Geographical Data Modeling. Computers and Geosciences. 1992, 18 (4): 401 - 408.
  • 3Godchild, M. F. and G. J. Hunter. Asimple Positional Accuracy Measure for Linear Features. International Journal of Geographical Information Scieence. 1997, 11 (3): 299-306.
  • 4陶本藻.平差因子与平差结构[J].大地测量与地球动力学,2002,22(3):6-9. 被引量:16
  • 5陶本藻.地球重力场平差模型误差的控制[J].武汉大学学报(信息科学版),2003,28(6):668-670. 被引量:19

共引文献14

同被引文献13

  • 1Freund R J,Wilson W J,Ping Sa.回归分析:因变量统计模型.沈崇麟,译.重庆:重庆大学出版社,2012.
  • 2Stein C.Inadmissibility of the usual estimator for the mean of a mult1variate normaldistribution.Prob third Berkeley Sy Pm Math Statist Prob I,1956:197-206.
  • 3Stein C.Inadmissibility of the usual estimator for the variance of a normal distribution with unknown mean.Ann Inst Statist Math,1964 ; 16:155-160.
  • 4Massy W F.Principal components regression in exploratory statistical research.J R Stat,1965 ;60:234-266.
  • 5Herl A E,Kennard R D.Ridge regression,biased estimation for non orthogonal problems.Technometrios,1970 ; 12:55-67.
  • 6Tanaka H,Fuzzy data analysis by possibilistic linerar models.Fuzzy Sets and Systems,1987 ;24:363-375.
  • 7Shapiro A F.Fuzzy regression models.Article of Penn State University,2005.
  • 8Smith A F M.A general Bayesian linear model.Journal of the Royal Statistical Society.Series B (Methodological),1973 ;35 (1):67-75.
  • 9Woltman H,Feldstain A,MacKay J C,et al.An introduction to hierarchical linear modeling.Tutorials in Quantitative Methods for Psychology,2012; 8(1):52-69.
  • 10Nahashon S N,Aggrey S E,Adefope N A,et al.Growth characteristics of pearlgray guinea fowl as predicted by the richards,gompertz,and logistic models.Poultry Science,2006,85:359-363.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部