期刊文献+

感应电机的神经网络自适应L_2鲁棒控制 被引量:2

Neural network adaptive L_2 robust control of induction motors
下载PDF
导出
摘要 针对感应电机控制中存在的参数不确定性,基于反步法(backstepping)设计了感应电机的神经网络自适应L2鲁棒控制器,提出了控制器和一个转子磁链观测器联用,考虑了磁链估计误差。控制器用径向基函数神经网络(RBFNN)补偿定、转子电阻,及负载转矩和磁链估计误差的不确定性。根据HJI(hamilton-jaccobi-issacs)不等式证明了该控制系统的鲁棒性和稳定性,避免了直接解HJI不等式。仿真结果表明,提出的控制方法对于所考虑的不确定性是鲁棒的,对转速和转子磁链参考信号跟踪精确度高,不必假设所有的状态变量可测量,适用于高性能的感应电机控制系统。 To deal with the parameter uncertainties of induction motor in its control system, a work adaptive L2 robust control method is proposed based on backstepping, and the proposed neural netcontrollers are combined with a rotor flux observer and the rotor flux estimation error is considered. The uncertainties of stator and rotor resistances and load torque are compensated by using radial basis function neural networks (RBFNNs). The control system is proved to be robustness and stable by using HJI (hamilton-jaccobi-issacs) inequality without saluting it directly. The simulation results indicate that the proposed control method is robust to the considered uncertainties, able to trace the speed and rotor flux reference signals accurately, and do not need all the state variables are detectable, so it satisfies the requirement of high performance induction motor control system.
作者 陈维 王耀南
出处 《电机与控制学报》 EI CSCD 北大核心 2007年第3期211-216,共6页 Electric Machines and Control
基金 国家自然科学基金项目(60375001)
关键词 神经网络 自适应 L2鲁棒控制 径向基函数 HJI不等式 neural network adaptive L2 robust control radial basis function HJI inequality
  • 相关文献

参考文献7

  • 1MARINO Riccardo,PERESADA Sergei,VALIGI Paolo.Adaptive input-output linearization control of induction motor[J].IEEE Trans.on Automatic Control,1993,38(2):208 -21.
  • 2RODIC Miran,JEZERNIK Karel.Speed-sensorless sliding-mode torque control of an induction motor[J].IEEE Trans.on Industrial Electronics,2002,49(1):87 -5.
  • 3KWAN C M,LEWIS F L.Robust backstepping control of induction motors using neural networks[J].IEEE Trans.on Neural Networks,2000,11(5):1178-187.
  • 4LI Yahui,LIU Guozhong,ZHUANG Xianyi,et al.Adaptive backstepping control for induction motor based on neural network and dynamic surface technique[C].Proceedings of IEEE Conference on Control Applications,Istanbul,Turkey,2003,2:826-31.
  • 5林飞,张春朋,宋文超,陈寿孙.感应电机的L_2增益鲁棒控制[J].中国电机工程学报,2003,23(9):117-120. 被引量:28
  • 6郭庆鼎,蓝益鹏.永磁直线伺服电机L_2鲁棒控制的研究[J].中国电机工程学报,2005,25(18):146-150. 被引量:32
  • 7WANG Lixin.A Causein Fuzzy System and Control[ M ].Upper Sadle River,NJ:Prientice-Hall,1997.

二级参考文献23

  • 1C, ecafi C, Rotondale N- Torque and speed regulation of induction motors using the passivity theory approach[J]. IEEE Trans on Ind Electronics, 1999, 46(1): 119-127.
  • 2Brdys M A, Dolcy D S L. Robustness of passivity based controller(PBC) for current-fed induction motors[J]. Electronics Letters,1999, 35(17): 1494-1495.
  • 3Van der Schaft A J. L2-Gain and passivity techniques in nonlinear control[M]. London: Springer-Verlag Press, 2000.
  • 4Sun Y Z, Liu Q J, Song Y H, et al. Hamiltonian modelling and nonlinear disturbance attenuation control of TCSC for improving power system stability[J]. IEE Prec-Control theory Appl, 2002,149(4): 278-284.
  • 5Kazmlerkowski M P, Sobczuk D L. High performance induction motorcontrol via feedback linearization[C]. Proceedings of the IEEE International Symposium on Industrial Electronics Athens, 1995.
  • 6Gokdere L U, Simaan M A. A passivity based method for induction motor control[J]. IEEE Trans on Ind Electronics, 1997, 44 (5):688-695.
  • 7Kristic M, Kanellakopoulos I, Kokotovic P. Nonlinear and adaptivecontrol design[M]. U.S.A. New Jersey: Prentice Hall, 1995.
  • 8Rahman M A, Vilathgamuwa M, Uddin M N et al. Nonlinear controlof interior permanent-magnet synchronous motor[J] . IEEETransaction on Industry Application, 2003, 39(2): 408-416.
  • 9Braembussche P V, Swevers J, Brussel H V et al. Accurate tracking control of linear synchronous motor machine tool axes [J]. Mechatronics, 1996, 6(5): 507-521.
  • 10Tan K K, Huang S N, Lee T H. Robust adaptive numericalcompensation for friction and force ripple in permanent-magnet linearmotors[J]. IEEE Transaction on magnetic, 2002, 38(1): 221-228.

共引文献50

同被引文献23

  • 1张兴华.感应电机的无速度传感器逆解耦控制[J].电工技术学报,2005,20(9):55-60. 被引量:14
  • 2曹先庆,朱建光,唐任远.基于模糊神经网络的永磁同步电动机矢量控制系统[J].中国电机工程学报,2006,26(1):137-141. 被引量:60
  • 3陈维,王耀南.基于神经网络的现代感应电机自适应L_2鲁棒控制[J].中国电机工程学报,2007,27(15):93-99. 被引量:11
  • 4Marino R, Peresada S, Valigi P. Adaptive input-output linearizing control of induction motors[J]. IEEE Transactions on Automatic Control, 1993, 38(2): 208-221.
  • 5Hassan K K, Elias G S. Robust speed control of induction motors using position and current measurements[J]. IEEE Transactions on Automatic Control, 1996, 41(8): 1216-1220.
  • 6Rodic M, Jezernik K. Speed-sensorless sliding-mode torque control of an induction motor[J]. IEEE Transactions on Industrial Electronics, 2002, 49(1): 87-95.
  • 7Kwan C M, Lewis F L. Robust backstepping control of induction motors using neural networks[J]. IEEE Transactions on Neural Networks, 2000, 11(5): 1178-1187.
  • 8Li Yahui, Liu Guozhong, Zhuang Xianyi, et al. Adaptive backstepping control for induction motor based on neural networks and dynamic surface technique[C]. IEEE Conference on Control Applications, Istanbul, Turkey, 2003.
  • 9Marchesoni M, Segarich P, Soressi E. A simple approach to flux and speed observation in induction motor drives[J]. IEEE Transactions on Industrial Electronics, 1997, 44(4): 528-535.
  • 10Li Zhen, Xu Longya. Sensorless field orientation control of induction machines based on a mutual MRAS scheme[J]. IEEE Transactions on Industrial Electronics, 1998, 45(5): 824-831.

引证文献2

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部