期刊文献+

多尺度压缩求导的一维图像边缘检测 被引量:2

Edge detection of one-dimension image on multi-scale compress derivation
下载PDF
导出
摘要 为了更加精确地计算塑料薄膜缺陷的宽度,在基于小波算法的多尺度变换基础上,提出了一种用于一维图像不同尺度间的压缩求导边缘检测方法。小波变换提供图像的多尺度描述,将压缩求导应用于不同尺度间的小波域,从而可将各尺度的图像信息更加有效地合成,得到最优的边缘检测效果。该方法比以往的单纯直线拟合方法具有更好的精确度,可以有效地增强边缘和抑制噪声。对一维图像进行的实验证明该方法是正确和有效的。 In order to compute the width of defects in plastic film accurately, a multi-scale compress derivation edge detection method of one-dimension image based on wavelet multi-scale transform is presented in this paper. The wavelet transform is employed to produce the multi-scale representation of image, and compress derivation method is applied in wavelet domain of different scales. The information of images with different scales can be synthesized effectively, and an optimal result of edge detection can be acquired. This method which is more accurate than former single straight line fitting method can enhance edge and remove noise effectively, and experiments of one-dimension image show that this method is correct and effective.
出处 《电机与控制学报》 EI CSCD 北大核心 2007年第3期287-290,297,共5页 Electric Machines and Control
关键词 小波算法 多尺度变换 压缩求导 边缘检测 wavelet algorithm multi-scale transform compress derivation edge detection
  • 相关文献

参考文献6

二级参考文献31

  • 1赵艳明,全子一.一种空间自适应小波门限去噪算法[J].光通信研究,2004(5):49-51. 被引量:4
  • 2Mumford D.,Shah J..Optimal approximation by piecewise smooth functions and associated variational problems.Communication on Pure and Applied Mathematics,1989,42(5):577~685.
  • 3Chan T.,Vese L..Active contour without edges.IEEE Transactions on Image Processing,2001,10(2):266~277.
  • 4Chan T.,Vese L..Active contour without edges for vectorvalued image.Journal of Visual Communication and Image Representation,2000,11(2):130~141.
  • 5Ambrosio L.,Tortorelli V..Approximation of functionals depending on jumps by elliptic functionals via Γ-convergence.Communication on Pure and Applied Mathematics,1990,43(8):999~1036.
  • 6Ambrosio L.,Tortorelli V..On the approximation of free discontinuity problems.Bollettino Dell Unione Matematica Inaliana,1992,7(6-B):105~123.
  • 7Aubert G.,Kornprobst P..Mathematical Problems in Image Processing-Partial Differential Equations and the Calculus of Variations.New York:Springer-Verlag,2001.
  • 8De Giorgi,Carriero M.,Leac A..Existence theorem for a minimum problem with free discontinuity set.Archive for Rational Mechanics and Analysis,1989,108(3):195~218.
  • 9Forcard M..On the variation approximation of the free-discontinuity problems in the vectorial case.Mathematical Models and Methods in Applied Science,2001,11(4):663~684.
  • 10Dacorogna B..Direct Methods in the Calculus of Variations.Berlin:Springer-Verlag,1989.

共引文献26

同被引文献12

  • 1魏煜,朱善安.最优阈值变换和轮廓跟踪在轮廓检测中的应用[J].计算机工程与应用,2004,40(24):88-90. 被引量:10
  • 2魏煜,朱善安.图像处理在水平尺标定系统中的应用[J].计算机应用研究,2004,21(12):168-169. 被引量:9
  • 3STEGER C. Unbiased Extraction of Curvilinear Structures from 2D and 3D Images[ D]. Mtinchen: Fakultat fur Infor- matik, Technische Universitat, 1998.
  • 4STEGER C. Analytical and empirical performance evaluation of subpixel line and edge detection [ C ]// IEEE, Empirical Evaluation Methods in Computer Vision. LOSAlamitos: IEEE Computer Society Press, 1998 : 188-210.
  • 5CANNY J. A computational approach to edge detection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, PAMI-8 (6) :698.
  • 6HOVUGH P. Machine analysis of bubble chamber pictures [C]// Proceedings of the International Conference on High Energy Accelerators and Instrumentation. Geneva, swvtzerland : CERN. 1959:554-556.
  • 7DUDA R O, HART P E. Use of the Hough transformation to detect lines and curves in pictures [ J ]. Communica- tions of the Association for Computing, 1972,15 ( 1 ) :11-15.
  • 8GONZALEZ R C, WOODS R E. Digital Image Processing(Second Edition)[M].北京:电子工业出版社.2002.
  • 9GARY BRADSKI, ADRIAN KAEBLER. Learning OpenCV [ M]. Califonua: O'Reilly Media,2013.
  • 10DUDA R O, HART P E, STORK D G. Pattern Classifica-tion[M].2nded..北京:机械工业出版社.2003.

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部