期刊文献+

一种基于纹理特征的卫星遥感图像云探测方法 被引量:31

A Method for Detecting Cloud in Satellite Remote Sensing Image Based on Texture
下载PDF
导出
摘要 针对卫星遥感图像中的云探测问题,提出了一种有效的纹理特征分析方法。该方法使用反映图像灰度性质和空间关系的分形和灰度共生矩阵两类纹理,分别来描述云区域和无云的下垫面区域,并从这两个纹理的共5个特征参数构成的多维空间中简化出最小的二维分类空间,使该空间能够完全地区分卫星遥感图像中的云和各种下垫面,利用它设计的线性分类器可以高效地实现云的自动探测功能。大量实际图像测试结果正确率达到98%,证实了该方法的有效性。 A valid texture feature analytical method is proposed to detect cloud in satellite remote sensing image. Using the fractal and gray level co-occurrence texture features to reflect image's gray property and space relationship between cloud and the earth surface, from their total five feature parameters this method found a simple two-dimensional classification space which is constructed by the fractal dimension value and energy value of the gray level co occurrence matrix. This space could completely distinguish cloud from various earth surface kinds and the classification implement designed by it realized efficiently cloud automated detection. Numbers of practical images are tested with a detection precise rate of 98% which proved its validity and robustness. This method could be applied for pattern recognition and classification of satellite images under complex background.
出处 《航空学报》 EI CAS CSCD 北大核心 2007年第3期661-666,共6页 Acta Aeronautica et Astronautica Sinica
基金 国家航天创新科学基金 国家自然科学基金(60543006)
关键词 卫星遥感图像 云检测 纹理特性 分形维数 灰度共生矩阵 satellite remote sensing image cloud detection texture feature fractal dimension gray level cooccurrence matrix
  • 相关文献

参考文献14

  • 1Saunders R W,Kriebe K T,An improved method for detecting clear sky and cloudy radiances from AVHRR data[J].Int J Rem Sens,1988,9:123-150.
  • 2Michael D K,Yoram J K,Menzel W P,et al.Remote sensing of cloud,aerosol,and water vapor properties from the Moderate Resolution Image Spectrometer (MODIS)[J].IEEE Transaction on Geoscience and Remote Sensing,1992,30:2-27.
  • 3Kittler J,Pairman D.Contextual pattern recognition applied to cloud detection and identification[J].IEEE Trans Geosci Remote Sensing,1985,23(11):855-863.
  • 4Mallat S G.A theory for multi resolution signal decomposition:the wavelet representation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1989,11(7):674-693.
  • 5Mandlebrot B B.The fractal geometry of nature[M].NewYork:W H Freeman,1982.
  • 6王淑华,赵宇明,周小四,周红妹.基于灰度连通域加权分数维的云雾自动分离算法[J].红外与激光工程,2002,31(1):18-22. 被引量:12
  • 7陈伟,周红妹,袁志康,葛伟强.基于气象卫星分形纹理的云雾分离研究[J].自然灾害学报,2003,12(2):133-139. 被引量:30
  • 8秦其明,陆荣建.分形与神经网络方法在卫星数字图像分类中的应用[J].北京大学学报(自然科学版),2000,36(6):858-864. 被引量:33
  • 9Haralick R M,Shanmugam K,Dinstein I.Texture features for image classification[J].IEEE Trans Syst,Man,Cybern,1973,3:610-621.
  • 10Baraldi A,Parmiggian F.An investigation of the texture characteristics associated with gray level co-occurrence matrix statistical parameters[ J].IEEE Transaction on Geoscienceand and Remote Sensing,1995,33(2):293-303.

二级参考文献13

共引文献80

同被引文献242

引证文献31

二级引证文献191

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部