期刊文献+

介电各向异性对铁电液晶光电特性的影响 被引量:1

Effect of Dielectric Anisotropy on Optoelectric Characteristics of Ferroelectric Liquid Crystal
下载PDF
导出
摘要 提出了一种描述铁电液晶(FLC)介电各向异性的电路模型.分析了FLC介电各向异性对开关响应时间、特征时间、特征电压和极化反转电流的作用,以及铁电扭矩和介电扭矩对光透射率的影响。模拟分析显示,延迟时间随驱动电压幅度变化存在最小值,特征时间(特征电压)随二轴参量的提高而增加(减小).随二轴参量增大,介电扭矩的贡献将超过铁电扭矩;相应的极化反转电流由双极性转变为单极性;透射率无"明态"和"暗态"的交替,且峰值逐步降低. A circuit model of ferroelectric liquid crystal (FLC) was proposed to study me effects of biaxial anisotropy on switching time, characteristic time, characteristic voltage and polarization reversal current, and those of ferroelectric torque and dielectric torque on light transmittance. The results indicate that the delay time has the minimum value as the drive voltage amplitude varies, and the characteristic time (voltage) increases (decreases) as the biaxial anisotropy increases. When the value of biaxial anisotropy is large enough, the effect of dielectric torque exceeds ferroelectric torque; the corresponding polarization reversal current becomes unipolar rather than bipolar; and the alternating change in light transmittance between "bright" and "dark" vanishes, and the peak value of light transmittance decreases gradually.
出处 《西南交通大学学报》 EI CSCD 北大核心 2007年第3期352-357,共6页 Journal of Southwest Jiaotong University
基金 国家自然科学基金资助项目(1017405790201011) 教育部科学技术研究重点项目(105148) 四川省应用基础研究项目(03JY029-048-1)
关键词 铁电液晶 介电各向异性 电路模型 开关响应 极化反转 二轴参量 光电特性 FLC dielectric anisotropy circuit model switching response polarization reversion biaxial anisotropy optoelectric characteristic
  • 相关文献

参考文献15

  • 1FPEDIERIC P,CROSSLAND W A.Optimization of ferroeleetrie liquid crystal optically addressed spatial light modulator performance[J].Optical Engineering,1997,36(8):2 294-2 301.
  • 2王梦遥,潘炜,罗斌.铁电液晶空间光调制器响应特性的研究[J].功能材料与器件学报,2004,10(4):489-492. 被引量:4
  • 3GARCIA-CAUREL E,de MARTINO A,DR(E)VILLON B.Spectroscopic Mueller polarimeter based on liquid crystal devices[J].Thin Solid Films,2004,455-456:120-123.
  • 4HIDEO F,HIROTO S,TAKASHI M.Polymer-stabilized ferroelectric liquid crystal for flexible displays[J].Displays,2004,25:3-8.
  • 5GIEBELMANN F,ZUGENMAIER P.Computer simulation of the electro-optical switching process in ferroelectric liquid crystal cells with bookshelf geometry[J].Liquid Crystals,1993,14(2):389-404.
  • 6OTON J M,PENA J M S,SABATER J.Modelling and characterization of ferroelectric liquid crystal displays[J].Optical and Quantum Electronics,1994,26(S):571-581.
  • 7SHI X M,MA J G,YEO K S,et al.Equivalent circuit model of on-wafer CMOS interconnects for RFICs[J].IEEE Transactions on Very Large Scale Integration(VLSI)Systems,2005,13(9):1 060-1 071
  • 8李诺晗,潘炜,罗斌.VCSOA典型参数特性的电路级分析[J].固体电子学研究与进展,2004,24(2):233-237. 被引量:4
  • 9王梦遥,潘炜,罗斌,邹喜华,张伟利,熊悦.铁电液晶光寻址空间光调制器响应速度的宏模型研究[J].光学技术,2005,31(1):35-37. 被引量:5
  • 10Sven T L.Ferroelectric and antiferroelectric liquid crystals[M].New York:Wiley,1999.

二级参考文献28

  • 1顾晓峰,黄信凡,杜家方,周进,李伟,陈坤基.氢化非晶硅pin二极管型光寻址空间光调制器的研制[J].中国激光,1996,23(2):135-138. 被引量:2
  • 2[11]Yu S F. Nonlinear dynamics of vertical-cavity surfaceemitting lasers. IEEE J Quantum Electronics, 1999 ;35(3):332~341
  • 3[12]Bjorlin E S, Bowers J E. Noise figure of vertical-cavity semiconductor optical amplifier. IEEE J Quantum Electronics, 2002;38(1) :61~66
  • 4[13]Pasquariello D, Bjorlin E S, Abraham P. High gain,high efficiency vertical-cavity semiconductor optical amplifiers. Indium Phosphide and Related Materials Conference, Santa Barbara: IEEE, 2002:307~310
  • 5[1]Wiedenmann D, Moeller B, Michalzik R, et al. Performance characteristics of vertical-cavity semiconductor laser amplifiers. J Electronics Letters, 1996; 32(4):342~343
  • 6[2]Riou B, Abraham P, Bjorlin E S, et al. Long wavelength vertical-cavity semiconductor optical amplifier.IEEE J Quantum Electronics, 2001 : 37 (2): 274~ 281
  • 7[3]Bjorlin E S, Dahl A, Piprek J, et al. Vertical-cavity amplifying modulator at 1. 3 μm. IEEE J Photonics Technology Letters, 2001 ; 13 (12): 1 271~ 1 273
  • 8[8]Piprek J, Bjorlin, Bowers J E. Design and analysis of vertical cavity semiconductor optical amplifiers. IEEE J Quantum Electronics,2001;37(1):127~134
  • 9[9]Calvez S, Clark A H, Hopkins J M, et al. 1. 3 μm GalnNAs optically-pumped vertical cavity semiconductor optical amplifier. J Electronics Letters, 2003; 39(1):100~102
  • 10[10]Agrawal G P, Dutta N K. Semiconductor Lasers, New York: Van Nostrand Reinhold, 1993;231~311

共引文献20

同被引文献18

  • 1邓罗根,罗丽媛.染料掺杂液晶中光致分子重新取向问题的研究进展[J].液晶与显示,2005,20(6):481-487. 被引量:6
  • 2顾开宇,高洪跃,周忠祥.无外场作用下掺甲基红向列液晶光折变特性实验研究[J].液晶与显示,2006,21(1):19-23. 被引量:4
  • 3韩仁学,任常愚,孙飞.C_(60)掺杂垂直排列向列相液晶中光束脉冲现象的研究[J].液晶与显示,2006,21(3):197-200. 被引量:1
  • 4Ducharrne S,Scott J C,Twieg R J, et al. Observation of the photorefractive effect in a polymer[J]. Phys Rev Lett, 1991,66(14): 1846-1850.
  • 5Khoo I C, Li H,Liang Y. Nonlinear photorefractive effects in liquid crystals[J]. Opt Lett, 1994,19(21) : 1723-1725.
  • 6Kesti T,Golemme A. Photorefractive nematic liquid crystal with gain of constant sign under alternating voltage[J].App Phys Lett, 2006,88(011917): 1-3.
  • 7Khoo I C, Li H, Liang Y, et al.Orientational photorefractive effects in nematic liquid crystal films[J]. IEEE of Quantum Electronics, 1996,32(3) : 525-534.
  • 8Domash L, Crawford G, Ashmead A. Holographic PDLC for photonic applications[J]. SPIE, 2000,4107:46-58.
  • 9Ono H, Shimokawa H, Emoto .A. Photorefractive liquid crystal-polymer dispersion with different morphology[J].Journal of Applied Phys, 2003,94( 1 ) : 23-30.
  • 10Ono H,Saito I, Kawastuki N. Orientatinal photorefractive properties in polymer dispersed liquid crystals with different polymer matrix[J]. SPIE, 1998,34(75) : 122-133.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部