摘要
We investigate theoretically the electron transport for a two-level quantum channel (wire) with Rashba spinorbit coupling under the irradiation of a longitudinally-polarized external laser field at low temperatures. Using the method of equation of motion for Keldysh nonequilibrium Green function, we examine the time-averaged spin polarized conductance for the system with photon polarization parallel to the wire direction. By analytical analysis and a few numerical examples, the interplay effects of the external laser field and the Rashba spin-orbit coupling on the spinpolarized conductance for the system are demonstrated and discussed. It is found that the longitudinally-polarized laser field can adjust the spin polarization rate and produce some photon sideband resonances of the conductance for the system.
We investigate theoretically the electron transport for a two-level quantum channel (wire) with Rashba spinorbit coupling under the irradiation of a longitudinally-polarized external laser field at low temperatures. Using the method of equation of motion for Keldysh nonequilibrium Green function, we examine the time-averaged spin polarized conductance for the system with photon polarization parallel to the wire direction. By analytical analysis and a few numerical examples, the interplay effects of the external laser field and the Rashba spin-orbit coupling on the spinpolarized conductance for the system are demonstrated and discussed. It is found that the longitudinally-polarized laser field can adjust the spin polarization rate and produce some photon sideband resonances of the conductance for the system.
基金
Project supported by the National Natural Science Foundation of China (Grant No 10574042), and the Hunan Provincial Natural Science Foundation of China (Grant No 06JJ2097).