期刊文献+

纳米晶复合Pr_2Fe_(14)B/α-Fe快淬薄带的织构与磁性 被引量:4

Texture and magnetic properties of nanocomposite Pr_2Fe_(14) B/α-Fe melt-spun ribbons
原文传递
导出
摘要 采用快淬方法制备了纳米晶复合Pr2Fe14B/α-Fe永磁薄带,研究了不同淬火速率对薄带织构和磁性的影响.通过改善快淬工艺,使得薄带中Pr2Fe14B相的晶粒在薄带的自由面形成显著的织构,Pr2Fe14B相晶粒易轴沿垂直于带面方向取向.分析了快淬凝固过程中Pr2Fe14B相的晶粒取向过程和机理,以及晶粒的大小和薄带结构的均匀性对薄带磁性的影响.对自由面有显著取向的薄带,进行酸蚀和打磨减薄处理,去除贴辊面未取向的部分,剩余部分为具有Pr2Fe14B相晶粒取向的各向异性薄带,Pr2Fe14B相取向使薄带的剩磁得到增强,矫顽力也有所提高. The effect of quenching rate on texture formation and magnetic properties of nanocomposite Pr2Fe14 B/α-Fe melt-spun ribbons has been investigated. The c-axis texture of Pr2 Fe14 B phase perpendicular to the ribbon plane was found on free surface of melt-spun ribbons prepared by optimized melt-spun technique. The formation of c-axis texture mainly result from the crystallites of Pr2 Fe14 B growing up along the flow of heat, which is induced by the contact of melt alloy with the surface of Cu wheel. The texture of Pr2Fe14 B phase does not penetrate through the thickness of melt-spun ribbons, and the incompletely textured structure does not bring about remanence enhancement. Anisotropic nanocomposite Pr2Fe14B/α-Fe ribbons were obtained by eliminating the unaligned part of the ribbons melt-spun at 16 m/s through acid-etching and polishing the side of ribbons in contact with the roller surface during spinning. Both Br and i Hc of the anisotropic ribbon measured along the direction perpendicular to the plane were improved obviously due to the c-axis alignment of Pr2 Fe14 B phase.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2007年第6期3527-3532,共6页 Acta Physica Sinica
基金 科技部重大基础研究前期研究专项基金(批准号:2004CCA04000)资助的课题~~
关键词 快淬 纳米晶复合Pr2Fe14B/α-Fe永磁薄带 织构 磁性能 optimized melt-spun technique, nanocomposite Pr2Fe14B/α-Fe melt-spun ribbons, texture, magnetic properties
  • 相关文献

参考文献5

二级参考文献29

  • 1[1]Shen B G, Ding J, Gu B X et al 1988 J. Phys. 49 C8-615
  • 2[2]Coehoorn R, Mooij D B, Duchateau J P W et al 1988 J. Phys. 49 C8-669
  • 3[3]Coehoorn R, Mooij D B, Waard C D 1989 J. Magn. Magn. Mater. 80 101
  • 4[4]Shen B G, Yang L Y, Zhang J X et al 1990 Solid State Commun. 74 893
  • 5[5]Kneller E F, Hawig R 1991 IEEE Trans. Magn. 27 3588
  • 6[6]Skomski R, Coey J M D 1993 Phys. Rev. B 48 15812
  • 7[7]Goll D, Seeger M, Kronmuller H 1998 J. Magn. Magn. Mater. 185 49
  • 8[8]Hadjipanayis G C 1999 J. Magn. Magn. Mater. 200 373
  • 9[9]Zhang H W, Zhang W Y, Yan A R et al 2001 Mater. Sci. Eng. A 304-306 997
  • 10[10]Zhang X Y, Guan Y, Yang L et al 2001 Appl. Phys. Lett. 79 2426

共引文献16

同被引文献66

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部