期刊文献+

火焰喷雾法合成ZnO和Mg_xZn_(1-x)O纳米颗粒的光学性能研究 被引量:5

Optical properties of ZnO and Mg_ xZn_(1- x)O nanoparticles prepared by flame spray synthesis
原文传递
导出
摘要 利用火焰喷雾法成功制备了纳米级的ZnO和MgxZn1-xO颗粒.通过对样品的X射线衍射谱和场发射扫描电子显微镜照片分析,发现制备的颗粒大小较为均匀,直径在20nm左右;镁元素的掺入引起晶格常数变小.通过透射光谱和光致发光谱的测量,发现MgxZn1-xO颗粒的禁带宽度远大于ZnO颗粒的禁带宽度,同时对两组样品的紫外发光和可见发光的强度变化和发光机理进行了探讨. Zinc oxide (ZnO) and magnesium doped ZnO (Mgx Zn1-x O) nanoparticles were prepared by flame spray synthesis. X-ray diffraction and field emission scanning electron microscopy were used to investigate the composition and structure of the samples. The results indicated that the samples contained nanoparticles of uniform size ranging between 10--20 nm; and after introducing Mg into ZnO the lattice constant decreased. According to the UV-VIS transmission spectra, the band gap of MgxZn1-x O nanoparticles was wider than that of ZnO nanoparticles. The photoluminescence of the samples showed high intensity UV emission, and the mechanisms of emission were discussed.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2007年第6期3584-3588,共5页 Acta Physica Sinica
基金 国家自然科学基金(批准号:60176002)资助的课题~~
关键词 火焰喷雾 ZNO 禁带宽度 纳米颗粒 flame spray synthesis, ZnO, band gap, nanoparticles
  • 相关文献

参考文献19

  • 1Feng Y J,Ming L Y,Wei L H 2005 J.Cryst.Growth 280 206
  • 2Zhao Q X,Willander M,Morjan R E 2003 Appl.Phys.Lett.83 165
  • 3Meulenkamp E A 1998 J.Phys.Chem.B 102 5566
  • 4Roy V A L,Djurisic A B,Chan W K 2003 Appl.Phys.Lett.83 141
  • 5Ning G H,Zhao X P,Li J 2004 Opt.Mat.27 1
  • 6Maemoto T,Ichiba N,Sasa S,Inoue M 2005 Thin Solid Films 486 174
  • 7Zhang X J,Ma H L,Li Y X,Wang Q P,Ma J,Zong F J,Xiao H D 2006 Chin.Phys.15 2385
  • 8Usui H,Shimizu Y,Sasaki T 2005 J.Phys.Chem.B 109 120
  • 9Ji Z,Zhao S,Wang C 2005 Mat.Sci.Eng.B 117 63
  • 10Ramakrishna G,Ghosh H N 2003 Langmuir 19 3006

二级参考文献37

  • 1[3]Shi C S,Fu Z X,Guo C X,Ye X L,Wei Y G,Deng J,Shi J Y and Zhang G B 1999 J.Electron.Spectros.Related Phenom.101-103 629
  • 2[4]Zhang Y T,Du G T,Liu D L,Wang X Q,Ma Y,Wang J Z,Yin J Z,Yang X T,Hou X K and Yang S R 2002 J.Cryst.Growth 243 439
  • 3[5]Chen S J,Liu Y C,Ma J G,Zhao D X,Zhi Z Z,Lu Y M,Zhang J Y,Shen D Z and Fan X W 2002 J.Cryst.Growth 240 467
  • 4[6]Xu X L,Guo C X,Qi Z M,Liu H T,Xu J,Shi C S,Chong C,Huang W H,Zhou Y J and Xu C M 2002 Chem.Phys.Lett.364 57
  • 5[7]Fu Z X,Lin B X,Liao G H and Wu Z Q 1998 J.Cryst.Crowth 193 316
  • 6[8]Lu Y M,Hwang W S,Liu W Y and Yang J S 2001 Mater.Chem.Phys.72 269
  • 7[9]Xue Z Y,Zhang D H,Wang Q P and Wang J H 2002 Appl.Surf.Sci.195 126
  • 8[10]Mitra A and Tareja P K 2001 J.Appl.Phys.89 2025
  • 9[11]Wu H Z,Qiu D J,Cai Y J,Xu X L and Chen N B 2002 J.Cryst.Growth 245 50
  • 10[12]Kohan A F,Ceder G and Morgan D 2000 Phys.Rev.B 61 15019

共引文献116

同被引文献71

引证文献5

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部