期刊文献+

具有年龄结构和分布时滞的竞争生态模型平衡解的稳定性 被引量:1

The Stability of Ecological model Balance Solution with Competitiveness of Age Construction and Distributing Time Lag
下载PDF
导出
摘要 考察了具有年龄结构和分布时滞的竞争生态模型的平衡解的稳定性,给出了平衡解稳定的条件. This article discussed the stability of ecological model balance solution with competitiveness of age construction and distributing time lag, It lead to the conditions of the stability of balance solution.
作者 王仁虎
出处 《甘肃高师学报》 2007年第2期28-31,共4页 Journal of Gansu Normal Colleges
基金 甘肃省自然科学基金资助项目:(ZS011-A25-007-Z)
关键词 竞争 时滞 生态模型 年龄结构 平衡解 Competitiveness Time lag Ecological model Age construction Balance solution
  • 相关文献

参考文献1

  • 1Masayasu Mimura,Kohkichi Kawasaki. Spatial segregation in competitive interaction-diffusion equations[J] 1980,Journal of Mathematical Biology(1):49~64

同被引文献7

  • 1Aiello W G, Freedman H I. A time-delay model of single species growth with stage structure[J]. Math. Biosci. ,1990,101:139-153.
  • 2Gourley S A, Yang K. Wavefronts and global stability in a time-delayed population model with stage structure [J]. Proc. Roy. Soc. Lond. A, 459A(2003), 1 563- 1 579.
  • 3Al-Omari J F M, Gourley S A. Stability and traveling fronts in Lotka-Volterra competition models with stage structure[J]. SIAM J. Appl. Math. , 2003, 63: 2 063- 2 086.
  • 4Wu J, Zou X. Asymptotic and periodic boundary value problems of mixed FDEs ans wave solutions of lattice differential equations [J]. J. Differential Equations, 1997,135: 315-357.
  • 5Wu J, Zou X. Travelling wave fronts of reaction-diffusion systems with delay [J]. J. Dynarn. Diff. Eqns. , 2001,13: 651-687.
  • 6Al-Omari J F M, Gourley S A. Monotone traveling fronts in age-structured reaction-diffusion model of a single species[J]. J. Math. Biol. ,2002,45:294-312.
  • 7Wang Z C, Li W T, Ruan S. Travelling wave fronts in reaction-diffusion systems with spatio-temporal delays [J]. J. Differential Equations, 2006,222: 185-232.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部