期刊文献+

有限元法应用于电缆终端应力锥缺陷分析 被引量:45

Analysis of Faults on Cable Terminal Stress Cone Based on Finite Element Method
下载PDF
导出
摘要 为了研究电缆终端应力锥出现缺陷时,高压静电场的分布和数值大小,采用有限元法,计算了加载110kV恒定电压于电力电缆上时,其终端的静电场分布与数值。当电缆附件预制式应力锥内侧出现凹陷时,凹陷处电缆表面与应力锥内侧不能完全密合,将形成由电介质填充的腔体。针对该现象,按照凹陷可能出现的位置和形状建立多个模型,然后计算110kV恒定电压下该模型电场强度的数值大小和电场分布,着重分析了凹陷周围的电场畸变。最后比较不同模型仿真结果表明小尺寸较大尺寸凹陷的场强大,畸变更严重,凹内介质为硅脂较空气时场强小。预制式应力锥内侧缺陷的存在,可能对电力设备安全运行造成危害。 The electric-field intensity around the power cable terminal is computed based on the finite element method when the power cable is loaded on the 110kV constant voltage source. If there are depressions on the inner flank of the pre-fabrieated stress cone, the surface of the power cable can not contact with the inner flank of the stress cone closely and the depression would cause the cavity that would be filled with the electrolyte. So the materials" characteristic changes suddenly on the space and the distribution of materials" dielectric constants are discontinuous on its mathematical model. The phenomenon could cause the local electrical field distorted and the electric-field intensity increasing sharp. It is ruinous for the insulation materials when the local electrical field is distorted for the intensity exceeding the dielectric strength possibly. Therefore, to analyze the electric-field distortion around the depressions, mathematical models are established according to the depressions and the distribution of the electric-field intensity on the models is computed when loaded on the 110kV constant voltage source. At last, the maximum intensity values from the different models are compared, and the potential harm of the depression to the safe operation of electrical equipment is analyzed.
出处 《高电压技术》 EI CAS CSCD 北大核心 2007年第5期152-154,共3页 High Voltage Engineering
关键词 有限元法 电缆终端 静电场 凹陷 应力锥 电介质 电场畸变 finite element method power cable's terminal electrostatic field depression stress cone electrolyte electrical-fleld distortion
  • 相关文献

参考文献13

二级参考文献25

  • 1陈守直,祝丽雯,罗俊华,袁淳智.电缆附件电场有限元计算方法[J].高电压技术,1996,22(3):14-15. 被引量:14
  • 2刘其昶.电气绝缘结构设计原理(中)[M].西安:西安交通大学出版社,1987..
  • 3[4]G.P.Van der wijk,等.Development and qualification of a new 400 kV XLPE cable system with integrated sensors for diagnostics[C].CIGRE 1998,21~103.
  • 4[5]J.L.Parpal,等.Prequalification testing of 345 kV extruded insulation cable system[C].CIGRE 1998,21~101.
  • 5户谷敦,等.275 kVCVケ一ブル用新型接续部の开发[J].电气现场技术,1997,(10):32-37.
  • 6[7]J.Oesterheld,等.Optimized design of accessories for245 kV and 420 kV XLPE cables[C].CIGRE 1992,21~202.
  • 7[10]应启良.参加1998年IEC TC20、SC20A、SC20B及SC20C会议技术总结报告[R].上海:上海电缆研究所,1998.
  • 8[11]H.Schadlich,等.Field testing of XLPE-insulated cables in 220 kV and 380 kV systems[C].CIGRE1990,21~106.
  • 9[12]K.Kikuchi,等.Recent technical progress in accessories for extra high voltage XLPE cables in Japan[C].CIGRE 1992,21~203.
  • 10[13]Kazushi Kobashi,等.Prefabricated joints for 275 kV XLPE cables[J].Furukawa Review,1994,13:51~61.

共引文献149

同被引文献433

引证文献45

二级引证文献391

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部