期刊文献+

砷和香烟烟气溶液对氧化应激的协同作用 被引量:2

Oxidative stress in rat lymphocytes induced by arsenite and cigarette smoke solution
下载PDF
导出
摘要 目的研究亚砷酸钠和香烟烟气溶液联合作用对大鼠淋巴细胞氧化应激的影响,并探讨两者对氧化应激的影响是否存在交互作用。方法大鼠淋巴细胞分为4组:亚砷酸钠单独作用组、香烟烟气溶液单独作用组、两者联合作用组和对照组,染毒后用流式细胞术检测细胞内活性氧的含量,用微量荧光法检测细胞内丙二醛含量,用彗星实验检测细胞的DNA损伤,同时采用2×2析因设计研究两者的交互作用。结果亚砷酸钠单独作用组、香烟烟气溶液单独作用组和两者联合作用组细胞内的活性氧含量、丙二醛含量、彗星尾长和细胞拖尾率均高于对照组。析因设计分析结果表明两者对细胞内活性氧含量、丙二醛含量及彗星尾长的影响存在交互作用。结论亚砷酸钠和香烟烟气溶液对大鼠淋巴细胞氧化应激的影响存在交互作用,交互作用方式为协同作用。 Objective To investigate oxidative stress in rat lymphocytes induced by arsenite and cigarette smoke solution and study their interaction. Methods Rat lymphocytes were divided into 4 groups: sodium arsenite treated group, cigarette smoke solution treated group, cigarette smoke solution and sodium arsenite treated group and control group. After the exposure, ROS production was detected by flow cytometry; Intracellular malondialdehyde was detected by fluorometry; DNA damage was detected by comet assay. 2 × 2 factorial design was used to evaluate the interaction. Results ROS, intracellular malondialdehyde, length of comet tail and tailed cell percentage in sodium arsenite treated group, cigarette smoke solution treated group, cigarette smoke solution and sodium arsenite treated group were significantly higher than those in control group. The results of the factorial design showed : Sodium arsenite and cigarette smoke solution had interaction on ROS production, malondialdehyde levels and length of comet tail, the interaction was synergism. Conclusions Sodium arsenite and cigarette smoke solution have interaction on oxidative stress in rat lymphocytes, and the interaction is synergism.
出处 《中国地方病防治》 北大核心 2007年第3期182-185,共4页 Chinese Journal of Control of Endemic Diseases
关键词 香烟烟气溶液 亚砷酸钠 氧化应激 交互作用 协同作用 Cigarette smoke solution Sodium arsenite Oxidative stress Interaction Synergism
  • 相关文献

参考文献15

  • 1仙玲玲,杨磊.生物体抗砷机制的研究进展[J].中国地方病学杂志,2004,23(1):92-93. 被引量:91
  • 2Tchounwou PB,Patlolla AK,Centeno JA.Carcinogenic and systemic health effects associated with arsenic exposure-a critical review[J].Toxicol Pathol,2003,31:575~588.
  • 3Bartecchi CE,MacKenzie TD,Schrier RW.The human costs of tobacco use[J].N Engl J Med,1994,330:907~912.
  • 4Bachelet M,Pinot F,Polla RI,et al.Toxicity of cadmium in tobacco smoke:protection by antioxidants and chelating resins[J].Free Radic Res,2002,36:99~106.
  • 5Shih CM,Ko WC,Wu JS,et al.Mediating of caspase-independent apoptosis by cadmium through the mitochondria-ROS pathway in MRC-5 fibroblasts[J].J Cell Biochem,2004,91:384~397.
  • 6Karpinski TM,Kostrzewska-Poczekaj M,Stachecki I,et al.Genotoxicity of the volatile anaesthetic desflurane in human lymphocytes in vitro,established by comet assay[J].J Appl Genet,2005,46:319~324.
  • 7Na M,Min BS,An RB,et al.Effect of Astilbe koreana on ultraviolet B(UVB)-induced inflammatory response in human keratinocytes[J].Biol Pharm Bull,2004,27:1301~1304.
  • 8Sohn JH,Han KL,Lee SH,et al.Protective Effects of Panduratin A against Oxidative Damage of tert-Butylhydroperoxide in Human HepG2 Cells[J].Biol Pharm Bull,2005,28:1083~1086.
  • 9Fairbairn DW,Olive PL,ONeill KL.The comet assay:a comprehensive review[J].Mutat Res,1995,339:37~59.
  • 10Hei TK,Liu SX,Waldren C.Mutagenicity of arsenic in mammalian cells:role of reactive oxygen species[J].Proc Natl Acad Sci U S A,1998,95:8103~8107.

二级参考文献20

  • 1Rosen BP. Family of arsenic transporters. Trends Microbiol,1999,7:207-212.
  • 2Abernathy CO, Liu YP, Longfellow D,et al. Arsenic: health effects, mechanisms of actions, and research issues. Environ Health Perspect, 1999,107: 593-597.
  • 3Makus JT,Robert W. Mechanisms involved in metalloid transport and tolerance acqusition. Curr Genet, 2001,40:2-12.
  • 4Rosen BP. Biochemistry of arsenic detoxification. FEBS Lett,2002,529: 86-92.
  • 5Gratti D, Mitra B, Rosen BP. Escherichia coli soft metal iontranslocating ATPases. J Biol Chem, 2000,275: 34009-34012.
  • 6Rosen BP. Transport and detoxification systems for transition metals,heavy metals and metalloids in eukaryotic and prokaryotic microbes.Comp Biochem Physiol A Mol Integr Physiol, 2002,133:689-693.
  • 7Willsky GR, Malamy MH. Characterization of two genetically separable inorganic phosphate transport systems in Escherichia coli.J Bacteriol, 1980,144:356-365.
  • 8Bun-ya M, Shikata K,Nakade S, et al. Two new genes, PHO86 and PHO87, involved in inorganic phosphate uptake in Saccharomyces cerevisiae. Curr Genet, 1996,29:344-351.
  • 9Lau WT, Howson RW, Malkus P, et al. Pho86p, an endoplasmic reticulum (ER) resident protein in Saccharomyces cerevisiae, is required for ER exit of the high-affinity phosphate transporter Pho84p. Proc Natl Acad Sci USA, 2000,97:1107-1112.
  • 10Sanders OI, Rensing C, Kuroda M,et al. Antimonite is accumulated by the glycerol facilitator GlpF in Escherichia coli. J Bacteriol, 1997,179:3365-3367.

共引文献90

同被引文献18

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部