期刊文献+

Generation of human/rat xenograft animal model for the study of human donor stem cell behaviors in vivo 被引量:1

Generation of human/rat xenograft animal model for the study of human donor stem cell behaviors in vivo
下载PDF
导出
摘要 AIM: To accurately and realistically elucidate human stem cell behaviors in vivo and the fundamental mechanisms controlling human stem cell fates in vivo, which is urgently required in regenerative medicine and treatments for some human diseases, a surrogate human-rat chimera model was developed.METHODS: Human-rat chimeras were achieved by in utero transplanting low-density mononuclear cells from human umbilical cord blood into the fetal rats at 9-11 d of gestation, and subsequently, a variety of methods, including flow cytometry, PCR as well as immunohistochemical assay, were used to test the human donor contribution in the recipients.RESULTS: Of 29 live-born recipients, 19 had the presence of human CD45+ cells in peripheral blood (PB) detected by ? ow cytometry, while PCR analysis on genomic DNA from 11 different adult tissues showed that 14 selected from ? ow cytometry-positive 19 animals possessed of donor-derived human cell engraftment in multiple tissues (i.e. liver, spleen, thymus, heart, kidney, blood, lung, muscle, gut and skin) examined at the time of tissue collection, as conf irmed by detecting human β2-microglobulin expression using immunohistochemistry.In this xenogeneic system, the engrafted donor-derived human cells persisted in multiple tissues for at least 6 mo after birth. Moreover, transplanted human donor cells underwent site-specifi c differentiation into CK18-positive human cells in chimeric liver and CD45-positive human cells in chimeric spleen and thymus of recipients.CONCLUSION: Taken together, these fi ndings suggest that we successfully developed human-rat chimeras, in which xenogeneic human cells exist up to 6 mo later. This humanized small animal model, which offers an in vivo environment more closely resembling to the situations in human, provides an invaluable and effective approach for in vivo investigating human stem cell behaviors, and further in vivo examining fundamental mechanisms controlling human stem cell fates in the future. The potential for new advances in our better understanding the living biological systems in human provided by investigators in humanized animals will remain promising. AIM: TO accurately and realistically elucidate human stem cell behaviors in vivo and the fundamental mechanisms controlling human stem cell fates in vivo, which is urgently required in regenerative medicine and treatments for some human diseases, a surrogate human-rat chimera model was developed. METHODS: Human-rat chimeras were achieved by in utero transplanting low-density mononuclear cells from human umbilical cord blood into the fetal rats at 9-11 d of gestation, and subsequently, a variety of methods, including flow cytometry, PCR as well as immunohistochemical assay, were used to test the human donor contribution in the recipients. RESULTS: Of 29 live-born recipients, 19 had the presence of human CD45^+ cells in peripheral blood (PB) detected by flow cytometry, while PCR analysis on genomic DNA from 11 different adult tissues showed that 14 selected from flow cytometry-positive 19 animals possessed of donor-derived human cell engraftment in multiple tissues (i.e. liver, spleen, thymus, heart, kidney, blood, lung, muscle, gut and skin) examined at the time of tissue collection, as confirmed by detecting human 132- microglobulin expression using immunohistochemistry. Tn this xenogeneic system, the engrafted donor-derived human cells persisted in multiple tissues for at least 6 mo after birth. Moreover, transplanted human donor cells underwent site-specific differentiation into CK18-positive human cells in chimeric liver and CEHS-positive human cells in chimeric spleen and thymus of recipients. CONCLUSION: Taken together, these findings suggest that we successfully developed human-rat chimeras, in which xenogeneic human cells exist up to 6 mo later. This humanized small animal model, which offers an in vivo environment more closely resembling to the situations in human, provides an invaluable and effective approach for in vivo investigating human stem cell behaviors, and further in vivo examining fundamental mechanisms controlling human stem cell fates in the future. The potential for new advances in our better understanding the living biological systems in human provided by investigators in humanized animals will remain promising.
出处 《World Journal of Gastroenterology》 SCIE CAS CSCD 2007年第19期2707-2716,共10页 世界胃肠病学杂志(英文版)
基金 Supported by The National Natural Science Foundation of China, No. 30271177 and No. 39870676 the National 9th Five-year Program, No. 101033 The Major Science and Technology Projects of Guangdong Province, No. B602 Natural Science Foundation of Guangdong Province, No. 021903 The Postdoctoral Fellowship Foundation of China (Series 29) The Special Fund of Scientifi c Instrument Collaborative Share-net in Guangzhou, No. 2006176
关键词 人/鼠嵌合体 异种移植 动物模型 人脐带血干细胞 体内活动 机制 Human umbilical cord blood-derived cells In utero xenogeneic transplantation Human-rat chimeras Embryonic microenvironment In vivo model
  • 相关文献

参考文献1

共引文献1

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部