期刊文献+

一种基于分布约简的规则获取方法 被引量:3

Rule Acquisition Method Based on Distribution Reduction
下载PDF
导出
摘要 基于决策表分布约简定义规则的分布核与分布约简概念,提出一种基于分布约简的规则获取方法。首先确定条件类的分布核,进而采用启发式算法计算其分布约简,挖掘出最简产生式规则。该方法能适应决策表的不一致情形,且运用此方法所提取的规则集能够保持与原信息系统一致。 This paper defined distribution core and distribution reduction of a rule by applying notion of decision table's distribution reduction, and put forward a kind of method based on distribution reduction for acquiring rules. This method got the core of each condition class first, then achieved the distribution reduction of that by applying heuristic algorithm, and mined concise production rules for each condition class, This method can be applicable to inconsistent decision tables, and the rule result keep consist to the original information system.
出处 《计算机应用研究》 CSCD 北大核心 2007年第6期42-44,共3页 Application Research of Computers
基金 国家自然科学基金资助项目(60474041) 湖南省自然科学基金资助项目(06JJ20075)
关键词 粗糙集 分布约简 分布核 规则获取 rough sets distribution reduction distribution core rule acquisition
  • 相关文献

参考文献9

二级参考文献30

  • 1曾黄麟.粗集理论及其应用[M].重庆:重庆大学出版社,1998..
  • 2王国胤.Rough集理论和知识获取[M].西安:西安交通大学出版社,2001..
  • 3[1]Pawlak Z. Rough Sets: Theoretical Aspects of Reasoning a bout Data. Boston: Kluwer Academic Publishers,1991
  • 4[6]Ziarko W. Variable precision rough set model. Journal of Computer and System Sciences,1993,46(1):39~59
  • 5[7]Greco S,Matarazzo B,Slowinski R. A new rough set approach in multicreteria and multiattribute classification. In: Lecture Notes in Artificial Intelligence 1424, New York: Springer-Verlag, 1998
  • 6[8]Slezak D. Approximate reducts in decision tables. In: Proceedings of IPMU' 96 ,Granada,Spain, 1996,3:159~ 1164
  • 7[9]Quafatou M. α-RST: A generalization of rough set theory. In formation Sciences,2000,124(1~4) :301~316
  • 8[10]Kryszkiewicz M. Comparative studies of alternative type of knowledge reduction in inconsistent systems. International Journal of Intelligent Systems, 2001,16(1): 105~120
  • 9Lan Shu,Mo Zhi Wen,Hu Dan. Methods of learning rules based on rough set: LBR and LEM3 [ A ]. IFSA World Congress and 20th NAFIPS International Couference [C]. 2001,2:753 -756.
  • 10Bakar A A,Sulaiman M N,Othman M,et al. Fining minimal reduct with binary integer programming in data mining [A]. TENCON 2000 [C]. 2000,(2) :141 -146.

共引文献1010

同被引文献23

  • 1孙兴波,杨平先,干树川.基于属性重要度的启发式特征选取算法[J].自动化与仪器仪表,2005(5):13-14. 被引量:2
  • 2Pawhk Z. Rough set. International Journal of Computer and Information Seiences,1982;11 (6) :341--356.
  • 3Kryszkiewicz M. Rough set approach to incomplete information system. Information Science, 1998 ; 11 (2) :39-49.
  • 4Skowron, R C. The discernbility matrices and functions in information systems, intelligent decision support, handbook of applications and Advances of Rough Sets Theory. The Netherlands: Kluwer, 1992:331--362.
  • 5Hu Xiaohua, Cercone N. Learning in relational databases : a rough set approach. Computational Intelligeoce, 1995 ; 11 (2) : 323--337.
  • 6Pawlak Z.Rough Set[J].International Journal of Computer and Information Sciences,1982,11(6):341-356.
  • 7Skowron Rauszzer C.The Discembility Matrices and Functions in Information Systems:Intelligent Decision Support,Handbook of Applications and Advances of Rough Sets Theory[M].The Netherlands:Kluwer,1992:331-362.
  • 8Hu Xiao-Hua,Cercone N.Learning in relational databases:a rough set approach[J].Computational Intelligence,1995,11(2):323-337.
  • 9刘清.Rough集及Rough推理[M].北京:科学出版社,2001..
  • 10杨明.决策表中基于条件信息熵的近似约简[J].电子学报,2007,35(11):2156-2160. 被引量:44

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部