期刊文献+

基于调和模型的快速神经网络图像复原算法 被引量:2

Fast Image Restoration Algorithm Using Neural Network Based on Harmonic Model
下载PDF
导出
摘要 针对传统神经网络图像复原算法在复原过程中模糊图像边缘,收敛速度慢等不足,提出一种基于调和模型的快速神经网络图像复原算法。在该算法中,图像复原模型的正则化项采用调和模型,并在每次网络状态更新时引入最陡下降方法,使得网络能量迅速减小。实验表明,提出的算法能够很好复原图像的边缘特征,并具有快速收敛等优点。 Traditional image restoration algorithm using neural network has some shortcomings was fond in experiments, such as blurring edges, low speed of convergence. A fast image restoration algorithm using neural network based on harmonic model was given. In this algorithm, this paper used harmonic model as regular term in image restoration model, and introduced the steepest descent method in update rule to accelerate the convergence of network. Experiment results show that the proposed algorithm could restore the degraded image while preserving the edge in a fast speed.
出处 《计算机应用研究》 CSCD 北大核心 2007年第6期158-160,共3页 Application Research of Computers
关键词 图像复原 神经网络 调和模型 去模糊 image restoration neural network harmonic model image deblurring
  • 相关文献

参考文献8

  • 1ZHOU Y T, CHELLAPPA R. Image restoration using a neural network[ J ]. IEEE Trans. Acoust., Speech, Signal Processing, 1988,36 (7) : 1141-1151.
  • 2PAIK J K, KATSAGGELOS A K. Image restoration using a modified hopfield network [ J]. IEEE Trans. Image Processing, 1992,1 ( 1 ) :49-63.
  • 3韩玉兵,吴乐南.基于状态连续变化的Hopfield神经网络的图像复原[J].信号处理,2004,20(5):431-435. 被引量:13
  • 4PERRY S W, GUAN L. Weight assignment for adaptive image restoration by neural network[ J]. IEEE Trans. Neural Networks, 2000, 11 (1) :156-170.
  • 5SUN Y, Hopfield neural network based algorithms for image restoration and reconstruction--part I: algorithms and simulations [ J ]. IEEE Trans. Signal Processing, 2000,48(7):2119-2131.
  • 6YAN Leipo, WANG Lipo. Image restoration using chaotic simulated annealing: proc. of the International Joint Conference on Neural Networks [ C ]. [ S. l. ]:[ s. n. ], 2003:3060-3064.
  • 7WONG Hausan, GUAN Ling. A neural learning approach for adaptive image restoration using a fuzzy model-based network architecture[ J]. IEEE Trans. Neural Networks, 2001,12(3) :516-531.
  • 8RUDIN L, OSHER S, FATEMI E. Nonlinear total variation based noise removal algorithms:proc. of the 11 th Annual Internetional Conf. of the Center for Nonlinear Studies on Experimental Mathematics[ C ]. Amsterdam, Netherlands: Elsevier North-Holland, Inc. , 1992 : 259- 268.

二级参考文献6

  • 1EICHMANN G, STOJANCIC M. Superresolving signal and image restoration using a linear associative memory[J]. AppL Opt., 1987, voL26:1911-1918.
  • 2ZHOU Y.T, CHELLAPPA R, JENKINS B.K. Image restoration using a neural network[J], IEEE Trans. Acoust,Speech. Signal Processing, 1988. 36(7):1141-1151.
  • 3PAIK J.K. KATSAGGELOS A. K. Image restoration using a modified Hopfield network[J].IEEE Trans. Image Processing,1992,1(1):49-63.
  • 4HOPFIELD J.J. Neural networks and physical system with emergent collective computational abilities[J]. Proc. Nat. Acad.Sci. USA. Apr 1983,vol.79:2554-2558.
  • 5BRUCK J. GOODMAN J. W .A generalized convergence theorem for neural networks[J]. IEEE Trans. Inform. Theory. 1988.vol. 34:1089-1092.
  • 6王磊,戚飞虎,莫玉龙.精确复原退化图象的连续 Hopfield 网络研究[J].上海交通大学学报,1997,31(12):43-46. 被引量:13

共引文献12

同被引文献15

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部