期刊文献+

基于维层次的语义Cube存储与增量更新技术研究 被引量:1

Research on Storage and Incremental Update Technology of Semantic Cube Based on Dimension Hierarchy
下载PDF
导出
摘要 利用维的层次性为每一个维建立一个索引,同时保存相应的层次信息和预聚集数据,提出了基于维层次的语义Cube。在进行数据更新时,使用更新前后的差值自下而上对受到更新单元影响的祖先节点进行增量更新,在进行模式更新时,无须重构Cube,即可实现增量更新。由于其存储结构的灵活性,在高效完成增量更新的同时实现了Cube上进行上探、下钻等语义操作。理论分析和实验结果均表明,提出的基于维层次的语义Cube与传统Cube相比,性能显著提高。 By using the dimension technique on the cube, the paper proposed the highly performance DHSC (Semantic Cube based on Dimension Hierarchy). DHSC stores the pre-aggregate data and dimension hierarchy information through the index of each dimensions, thus, it could optimize the query efficiency and update efficiency, and also support the cube semantic operation such as roll up and drill down. The DHSC could incrementally update the all affected ancestor notes while updating the data cell by insertion and deletion in it, and also incrementally model update, As a result, this algorithm could greatly reduce the update time. Author had compared the performances of DHSC with the previous ones ( e, g. SDDC), The analytical and experimental results show that the performances of DHSC proposed are more efficient.
出处 《计算机应用研究》 CSCD 北大核心 2007年第6期213-215,共3页 Application Research of Computers
基金 国家自然科学基金资助项目(60473012) 江苏省自然科学基金资助项目(BK2005047 BK2005046 BK2004052) 江苏省"十五"高科技基金资助项目(BG2004034)
关键词 数据仓库 语义Cube 增量更新 data warehouse semantic cube incremental update
  • 相关文献

参考文献8

  • 1CODD E F. Providing OLAP( on-line analytical processing) to useranalysts: an IT mandate, Technical Report[ R]. [S. l. ] :E F Codd and Associates, 1993.
  • 2LIANG W, WANG H, ORLOWSKA M E. Range queries in dynamic OLAP data cubes [ J ]. Data & Knowledge Engineering, 2000,34 (1) :21- 38.
  • 3RIEDEWALD M, AGRAWAL D, ABBADI A E. Flexible data cubes for online aggregation:proc. of the 8th Int' 1 Conf. on Database Theory[ C ]. Heidelberg :Springer, 2001 : 159-173.
  • 4LI Jianzhong, SRIVASTAVA J. Efficient aggregation algorithms for compressed data warehouses[ J]. IEEE Trans. on Knowledge and Data Engineering,2002,14(3) :515-529.
  • 5冯玉,王珊.Compressed Data Cube for Approximate OLAP Query Processing[J].Journal of Computer Science & Technology,2002,17(5):625-635. 被引量:3
  • 6SISMANIS Y, DELIGIANNAKIS A, ROUSSOPOULOS N, et al. Dwarf: shrinking the petaCube: proc. of the ACM SIGMOD Int' l Conf. on Management of Data[ C]. New York :ACM Press, 2002: 464-475.
  • 7XIN Dong, HAN Jiawei, LI Xiaolei, et al. Star-cubing: computing iceberg cubes by top-down and bottom-up integration [ C ]// FREYTAG J C, LOCKEMANN P C, ABITEBOUL S,et al. The 29th Int ' 1 Conf on VLDB. San Fransisco: Morgan Kaufmann, 2003 : 476- 487.
  • 8CHEN Y, DEHNE F, EAVIS T. Parallel ROLAP data cube construction on shared-nothing multiprocessors[ J]. Distributed and Paralled Databases,2004,15 (3) :219-236.

二级参考文献11

  • 1Gray J, Bosworth A, Layman A, Pirahesh H. DataCube: A relational aggragation operator generalizing Group-By,Cross-Tab, and SubTotals. In Proc. 12th ICDE, Neworleans, Louisiana, USA, 1996, pp.152-159.
  • 2Sarawagi S, Stonebraker M. Efficient organization of large multidimensional arrays, in Proc of ICDE, Houston,Texas, USA, 1994, pp.328-336.
  • 3Han J, Kambr M. Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers, 2000.
  • 4The OLAP Council. The OLAP benchmark, http://www.olapcouncil.org
  • 5Barbara D, DuMouchel W, Faloutsos C et al. The New Jersey data reduction report. IEEE Data Engineering Bulletin, 1997, 20(4): 3-45.
  • 6Acharya S, Gibbons P B, Poosala V, Ramaswamy S. Join Synopses for approximate query answering. In SIGMOD'1999, Philadelphia, Pennsylvania, USA, 1999, pp.275-286.
  • 7Vitter J S, Wang M. Approximate computation of multidimensional aggregates of sparse data using wavelets. In SIGMOD'1999, Philadelphia, Pennsylvania, USA, 1999, pp.193-204.
  • 8Shanmugasundaram J, Fayyad U, Bradley P S. Compressed Data Cubes for OLAP Aggregate Query Approximation on Continuous Dimensions. In KDD'1999, San Diego, California, USA, 1999, pp.223-232.
  • 9Jagadish H V, Madar J, Ng R T. Semantic Compression and Pattern Extraction with Fascicles. In VLDB'1999,Edinburgh, Scotland, 1999, pp.186-198.
  • 10Babu S, Garofalakis M, Rastogi R. SPARTAN: A model-based semantic compression system for massive data tables.In SIGMOD'2001, Santa Barbara, California, USA, 2001, pp.283-294.

共引文献2

同被引文献8

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部