期刊文献+

半奇异值算法的推导及其应用

Deduction and applications of semi singular value decomposition
下载PDF
导出
摘要 奇异值分解是将一矩阵分解为一个对角矩阵和两个正交矩阵,奇异值分解有着非常好的性质。但在其部分应用中,如秩亏损的最小二乘问题,线性方程组的最小范数解中,并没有充分利用它的所有性质。提出了半奇异值分解A=USR,其中U为正交矩阵,S为对角矩阵,R为上三角矩阵。在经过文中所述的后期数学处理后,它能够非常好地利用在各个方面,比如最小二乘问题和线性方程组中。这种分解不仅保留了奇异值分解后所应有的性质,更大大地降低了计算复杂度。因为该算法有求极值的能力,所以它将在应用领域中发挥更大的作用。 By decomposing a matrix into one diagonalizable matrix and two orthogonal matrixes,singular value decomposition has very good properties.But in some of its applications,for instance,in the problems of solving the linear dependent least squares and the smallest norm solution of a linear equation system,not all the properties of singular value decomposition are fully utilized.The semi singular value decomposition A=USR is suggested,where U is an orthogonal matrix,S is a diagonalizable matrix and R is a upper-triangular matrix.After some mathematical modifications as described in this paper,the semi singular value decomposition can be widely used in many applications,including the problems of least squares and linear equation system.This method of decomposition does not only retain all the properties of singular value decomposition,but also greatly reduce the computational complexity.Due to its ability to calculate the extremum,the semi singular value decomposition will be more useful in many applications.
作者 王萍 程余
出处 《计算机工程与应用》 CSCD 北大核心 2007年第17期59-62,76,共5页 Computer Engineering and Applications
基金 南开大学天津大学刘徽应用数学中心项目
关键词 奇异值分解 半奇异值分解 QR分解 矩阵计算 Singular Value Decomposition(SVD) semi-SVD QR decomposition matrix computation
  • 相关文献

参考文献13

  • 1Brandfield J R.矩阵[M].刘远图,译.北京:科学出版社,1982.
  • 2胡正名,陈启浩.矩阵方法[M].北京:人民邮电出版社,1985.
  • 3GolubGH VanLoanCF 袁亚湘译.矩阵计算[M].北京:科学出版社,2001.631-639.
  • 4Ki Hang Kim.Boolean matrix theory and applications[M].New York:Dekker,1982.
  • 5Blum K.Density matrix theory and applications[M].New York:Plenum Press,1981.
  • 6Kardestuncer H.Elementary matrix analysis for structures[M].New York:McGraw-Hill,1974.
  • 7Watkins D S.Undamentals of matrix computatjons[M].New York:Wiley-Interscience,2002.
  • 8Hatter D J.Matrix computer methods of vibration analysis[M].New York:Wiley,1973.
  • 9Nering E D.Linear algebra and matrix theory[M].New York:Wiley,1970.
  • 10Jenkins W M.Matrix and digital computer methods in structural analysis[M].New York:McGraw-Hill,1969.

二级参考文献8

  • 1[2]徐树方.矩 阵计算的理论与方法[M].北京:北京大学出版社,1999.270-278.
  • 2王中荣.矩阵与算子广义逆[M].北京:科学出版社,1994..
  • 3Liu Boan, Brun0 J. Solving ordinary differential equations by neural network [A]. Proceeding of 13# European Simulation Multi-conference "Modeling and Simulation: A Tool for the Next Millennium", June 1-4, 1999 [C]. Warsaw, Poland, 1999, Ⅱ: 437-441.
  • 4Zhou Xin, Liu Boan, Jammes Bruno. Solving steady-state partial derivative equation with neural network [A]. Zhang Liming, Gu Fanji. The 8th International Conference on Neural Information Processing [C]. Shanghai: Fudan University Press, 2001. 1069 - 1074.
  • 5Golub G, Loan V. Matrix Computations [M]. Baltimore, Maryland: Johns Hopkins University Press, 1983.
  • 6Lawson C L, Hanson R J. Solving Least Squares Problems[M]. Prentice-Hall, Inc, Englewood Cliffs, 1974.
  • 7Demmel J, Kahan W. Accurate singular values of bidiagonal matrices [J]. SIAM J Sci Stat Comput, 1990, 11, (5): 873 - 912.
  • 8卢琳璋,孙伟伟.一个逆奇异值问题[J].高等学校计算数学学报,1999,21(4):359-362. 被引量:2

共引文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部