期刊文献+

CpRu(PPh_3)_2SSi^iPr_3与SCNR(R=Ph,1-Naphthyl)反应的结构、成键与机理的理论研究 被引量:4

Theoretical Study of Structures, Bonding and Mechanism on Reaction of CpRuCpRu(PPh_3)_2SSi^iPr_3 with SCNR (R=Ph, 1-Naphthyl)
下载PDF
导出
摘要 应用密度泛函理论(DFT),通过CpRu(PH3)2SSiiPr3(Cp=环戊二烯负离子;iPr=异丙基)与SCNH模型化反应,探讨了CpRu(PPh3)2SSiiPr3与SCNR(R=苯基,萘基)的反应机理,分析了反应所涉及的各相关化合物的结构与成键特征.反应中首先失去一个膦配体,生成一个中间体.该中间体中,硫原子采取sp2杂化,硫原子剩余的一个p轨道与金属中心上的d轨道具有相同的对称性,因而该p轨道上的孤电子对可与金属中心上的d轨道形成π键,导致Cp环中心,Ru,S1,P和Si原子在同一平面内,而不是S1,P和Si原子偏离该平面.计算结果预测,S=C双键中的π键打开,生成含金属中心的四元环螯合物一步为反应的决速步骤.空间位阻的减小、π共轭体系的生成以及螯合环的存在,是导致该反应热力学有利的重要原因. The model reaction mechanism of CpRu(PH3)2ssiipr3 with SCNH, derived from CpRu(PPh3)2- ssiipr3 with SCNR (R=Ph, 1-naphthyl), was investigated by using density functional theory (DFT). The structures and bonding involved in the reaction mechanism were analyzed. The phosphine ligand is first dissociated from the reactant to afford an intermediate in the reaction. The sulphur atom in the intermediate has sp2 hybridization, and the remaining p orbital is symmetrical to the d orbital of the metal center. Thus, the lone pair on the p orbital can have interaction with the d orbital to form a π bond, which leads to the coplanarity of the center of Cp ring, Ru, P, S and Si atoms, rather than the deviation of P, S and Si atoms from the plane. Our results of calculations predict that formation of a four-membered ring containing metal center is the rate-determining step, Decrease of steric hindrance, formation of π conjagation and occurrence of chelation are responsible for the favorable thermodynamics of the reaction.
出处 《化学学报》 SCIE CAS CSCD 北大核心 2007年第10期943-949,共7页 Acta Chimica Sinica
基金 国家自然科学基金(No.20473047)资助项目.
关键词 密度泛函理论 反应机理 钉配合物 硅烷基转移 density functional theory reaction mechanism ruthenium complex silyl migration
  • 相关文献

参考文献24

  • 1Shaver,A.; El-khateeb,M.; Lebuis,A.M.Angew.Chem.,Int.Ed,Kngl.1996,35,2362.
  • 2Kubas,G.J.; Ryan,R.R.J.Am.Chem.Soc.1985,107,6138.
  • 3Kubas,G.J.; Ryan,R.R.Polyhedron 1986,5,473.
  • 4Kovacs,I.; Shaver,A.J.Organomet.Chem.2000,596,193.
  • 5Kovács,I.; Lebuis,A.-M.; Shaver,A.Organometallics 2001,20,35.
  • 6Cramer,C.S.Essentials of Computational Chemistry Theories and Models,Wiley,New York,2002.
  • 7Hay,P.J.; Wadt,W.R.J.Chem.Phys.1985,82,270.
  • 8Wadt,W.R.; Hay,P.J.J.Chem.Phys.1985,82,284.
  • 9Hay,P.J.; Wadt,W.R.J.Chem.Phys.1985,82,299.
  • 10Huzinaga,S.Gaussian Basis Sets for Molecular Calculations,Elsevier Science,Amsterdam,1984.

二级参考文献36

  • 1Sen A. Adv. Polym. Sci., 1986,73/74:125-128;.
  • 2Sen A.Chemtech, 1986,48.
  • 3Sen A. Acc. Chem. Res., 1993,26:303-310.
  • 4Brubaker M M. U.S. Pat., 1950,2:495-501.
  • 5Brubaker M M. Chem. A bstr., 1950,44:4285-4289.
  • 6Brubaker M M, Coffman D D, Hoehn H H. J. A m. Chem. Soc., 1952,74:1509-1515.
  • 7Colombo P, Kukacka L E, Fontana J, et al. J. Pol. Sci. A- I, 1966,4:28-32.
  • 8Steinberg M. Polym. Eng. Sci., 1977,17:335-339.
  • 9Drent E, Budzelaar P H. Chem. Rev,., 1996,96:663-681.
  • 10Ash C E. J. Mater. Educ., 1994,16:1-6.

共引文献2

同被引文献90

引证文献4

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部