摘要
研究了非齐次线性微分方程f(k)+Ak-1fk-1+…+Asf(s)+…+A0f=F的增长性问题,其中A0,A1,…,Ak-1,F是整函数,当存在某个系数As(s∈{0,1,…,k-1})为缺项级数且比其它系数有较快增长的意义下时,得到了上述非齐次微分方程的一定条件下超越解的超级的精确估计。
By using the Nevanlinna Value distribution theory, the paper investigates the growth of solutions of the differential equation f^(k)+Ak-1 f^k-1+…+Af^(s)+…+A0f=F,where A0,A1,…,Ak-1, F are entire functions and the dominant coeffcient As has fabry gap,it obtaines general estimates of the growth and zeros of entire solutions of higher order linear differential equations.
出处
《南昌大学学报(理科版)》
CAS
北大核心
2007年第2期117-119,共3页
Journal of Nanchang University(Natural Science)
基金
国家自然科学基金资助项目(10161006)