摘要
(∧αn,∧βn)表示在空间自回归模型Zij=αZi-1,j+βZi,j-1-αβZi-1,j-1+iεj中参数(α,β)的Guass-Newtor估计。根据已知的结论:当α=β=1时,{n32(∧αn-α,∧βn-β)}收敛于二元正态随机向量分布即limn{(n32(∧αn-α,∧βn-β))′}DN2(0,Γ),其中Γ=d iag(2.2)。利用双参数强鞅收敛定理,可以证明:当r<32时,nr(∧αn-α,∧βn-β)→0.a.e。
Let (^∧αn,^∧βn)denote the Gauus -Newton estimator of the parameter (α ,β) in the autoregression model Zij=αZi-1j+βZij-1-αβZi-1j-1 +εij. It is shown in an earlier paper that when α=β=1,{n^3/2(^∧α-α,^∧βn-β)} converges in distribution to a bivariate normal random randon vector:lim n {(n^3/2(^∧αn-α,^∧βn-β))′}D→N2(0,Г),Г=diag( 2.2 ) o A two -parameter strong martingale convergence theorem is employed here to prove that almost surely when n^r(^∧αn-α,^∧βn-β)→0- almost wurely when r〈3/2.
出处
《南昌大学学报(理科版)》
CAS
北大核心
2007年第2期125-127,131,共4页
Journal of Nanchang University(Natural Science)