期刊文献+

一类空间自回归模型的强相合性 被引量:1

Strong Consistency in Spatial Autoregression Model
下载PDF
导出
摘要 (∧αn,∧βn)表示在空间自回归模型Zij=αZi-1,j+βZi,j-1-αβZi-1,j-1+iεj中参数(α,β)的Guass-Newtor估计。根据已知的结论:当α=β=1时,{n32(∧αn-α,∧βn-β)}收敛于二元正态随机向量分布即limn{(n32(∧αn-α,∧βn-β))′}DN2(0,Γ),其中Γ=d iag(2.2)。利用双参数强鞅收敛定理,可以证明:当r<32时,nr(∧αn-α,∧βn-β)→0.a.e。 Let (^∧αn,^∧βn)denote the Gauus -Newton estimator of the parameter (α ,β) in the autoregression model Zij=αZi-1j+βZij-1-αβZi-1j-1 +εij. It is shown in an earlier paper that when α=β=1,{n^3/2(^∧α-α,^∧βn-β)} converges in distribution to a bivariate normal random randon vector:lim n {(n^3/2(^∧αn-α,^∧βn-β))′}D→N2(0,Г),Г=diag( 2.2 ) o A two -parameter strong martingale convergence theorem is employed here to prove that almost surely when n^r(^∧αn-α,^∧βn-β)→0- almost wurely when r〈3/2.
作者 闻斌
出处 《南昌大学学报(理科版)》 CAS 北大核心 2007年第2期125-127,131,共4页 Journal of Nanchang University(Natural Science)
关键词 空间自回归模型 Gauss-Newtor估计 强鞅 spatial autoregression model Gauss - Newton estimator strong martingle
  • 相关文献

参考文献9

  • 1Martin R J.A Subclass of Lattice Processes Applied to a Problem in Plannar Sampling[J].Biometrika,1979,66:209-217.
  • 2Jain A K.Advances in Mathematical Models for Image Processing[J].Pro IEEE,1981,69:502-528.
  • 3Basu S,Reinsel G C.Regression Models with Spatial Correlated Errors[J].J Amer Statist Assoc,1994,89:88-99.
  • 4Cullis B,Gleeson R.Spatial Analysis of Field Experiment-an Extension to two Dimensions[J].Biometrics,1991,47:1 449-1 460.
  • 5Basu S.Anaysis of First-order Spatial ARMA Models[D].Ph.D.Dissertation,University of Wisconsion.Madisson,WI,1990.103-117.
  • 6Khalil T M.A Study of the Doubly Geometric Process,Stationary Cases and a Nonstationary Case[J].Amer Statist Assoc,1991,86:450-456.
  • 7Bhattacharya B B,Khalil T M.Gauss-Newton Estimation of Parameters for a Spatial Autoregression Model[J].Statist Probab Lett,1996,28:173-179.
  • 8Walsh J B.Martingales with a Multidimensional Parameter and Stochastic Integrals[J].Lecture Notes in Mathematics,1986,1215:329-491.
  • 9Hu T C,Moricz F.Strong Laws of Large Numbers for Arrays of Rowwise Independent Random Variables[J].Acta Math Hungar,1989,54:153-162.

同被引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部