期刊文献+

单组分电解质溶液中纳滤膜的反射系数 被引量:3

Reflection coefficient of nanofiltration membranes in single electrolyte solution
下载PDF
导出
摘要 The space-charge(SC)model and Teorell-Meyer-Sievers(TMS)model combined with irreversible thermodynamics model are applied to predict the transport coefficients of nanofiltration membranes in single electrolyte solution.The reflection coefficient has been numerically calculated by the SC model and analytically calculated by TMS model.The results show that the reflection coefficient approaches unit in the range of low-concentration regime and approaches zero in the range of high-concentration.While the diffusion coefficients ratio of co-ion over counterion is less than 1.0,the reflection coefficient is positive over the whole concentration range.When the ratio is larger than 1.0,the reflection coefficient is negative in a certain intermediate concentration region.And the increase of the surface charge density and the decrease of the pore radius cause the increase in the reflection coefficient.The SC model and TMS model show good agreement in the calculation of the reflection coefficient when the dimensionless potential gradient in the pore surfaces is less than 1.0 and the pore radius is less than 5.0 nm. The space-charge (SC) model and Teorell-Meyer-Sievers (TMS) model combined with irreversible thermodynamics model are applied to predict the transport coefficients of nanofiltration membranes in single electrolyte solution. The reflection coefficient has been numerically calculated by the SC model and analytically calculated by TMS model. The results show that the reflection coefficient approaches unit in the range of low-concentration regime and approaches zero in the range of high- concentration. While the diffusion coefficients ratio of co-ion over counterion is less than 1. 0, the reflection coefficient is positive over the whole concentration range. When the ratio is larger than 1. 0, the reflection coefficient is negative in a certain intermediate concentration region. And the increase of the surface charge density and the decrease of the pore radius cause the increase in the reflection coefficient. The SC model and TMS model show good agreement in the calculation of the reflection eoefficient when the dimensionless potential gradient in the pore surfaces is less than 1.0 and the pore radius is less than 5.0 nm.
出处 《化工学报》 EI CAS CSCD 北大核心 2007年第6期1507-1513,共7页 CIESC Journal
基金 国家重点基础研究发展计划项目(2003CB615701)。~~
关键词 反射系数 空间电荷模型 固定电荷模型 纳滤膜 reflection coefficient space-charge model Teorell-Meyer-Sievers model nanofiltration membrane
  • 相关文献

参考文献11

  • 1Kedem O,Katchalsky A.Permeability of composite membranes(Ⅰ):Electric current,volume flow and flow of solute through membranes.Trans.Faraday Soc.,1963,59:1918-1930
  • 2Morrison F A Jr,Osterle J F.Electrokinetic energy conversion in uhrafine capillaries.J.Chem.Phys.,1965,43(6):2111-2114
  • 3Gross R J,Osterle J F.Membrane transport characteristicsof uhrafine capillaries.J.chem.Phys..1968.49(1):228-233
  • 4Fair J C,Osterle J F.Reverse electrodialysis in charged capillary membranes.J.Chem.Phys.,1971,54(8):3307-3316
  • 5Hijnen H J M,Van J,Smit J A M.The application of the space-charge model to the permeability properties of charged microporous membranes.J.Colloid Interf.Sci..1985,107(2):525-539
  • 6尚伟娟,王晓琳,于养信.基于电荷模型的荷电膜传递现象的研究进展[J].化工学报,2006,57(8):1827-1834. 被引量:4
  • 7Wang Xiaolin,Tsuru T,Nakao S I,Kimura S.Electrolyte transport through nanofihration membranes by the space-charge model and the comparison with TeorellMeyer-Sievers model.J.Membrane Sci.,1995,103:117-133
  • 8Teorell T.Diffusion effect upon ionic distribution(Ⅰ):Theoretical.P.Natl.Acad.Sci.USA,1935,21(15):152-161
  • 9Sievers K H,Sievers J F.La perméabilité des membranes.Hely.Chim.Acta,1936,19:649-664,665-677,987-995
  • 10Lefebvre X,Palmeri J,David P.Nanofihration theory:an analytic approach for single salts.J.Phys.Chem.B,2004,108:16811-16824

二级参考文献44

  • 1Smit J A M.Reverse osmosis in charged membranes:analytical predictions from the space-charge model.J.Colloid Interf.Sci.,1989,132(2):413-424
  • 2Westermann-Clerk G B,Anderson J L.Experimental verification of the space charge model for electrokinetics in charged microporous membranes.J.Electrochem.Soc.,1983,130(4):839-847
  • 3Christoforou C C,Westermann-Clerk G B,Anderson J L.The streaming potential and inadequacies of the Helmholtz equation.J.Colloid Interf.Sci.,1985,106(1):1-11
  • 4Martinez L,Gigosos M A,Hernandez A,Tejerina F.Study of some electrokinetic phenomena in charged microcapillary porous membranes.J.Membrane Sci.,1987,35(1):1-20
  • 5Diez L M,Villa F M,Gimenez A H,Garcia F T.Streaming potential of some polycarbonate microporous membranes when bathed by LiCl,NaCl,MgCl2 and CaCl2 aqueous solutions.J.Colloid Interf.Sci.,1989,132(1):27-33
  • 6Teorell T.Diffusion effect upon ionic distribution(Ⅰ):Theoretical.P.Natl.Acad.Sci.USA,1935,21(15):152-161
  • 7Meyer K H,Sievers J F.La perméabilité des membranes.Helv.Chim.Acta,1936,19(1):649-677
  • 8Kobatake Y,Takeguchi N,Toyoshima Y,Fujita H.Studies of membrane phenomena(Ⅰ):Membrane potential.J.Phys.Chem.,1965,69(11):3981-3988
  • 9Toyoshima Y,Kobatake Y,Fujita H.Studies of membrane potential(Ⅳ):Membrane potential and permeability.Trans.Faraday Soc.,1967,63(539):2814-2827
  • 10Ueda T,Kamo N,Ishida N,Kobatake Y.Effective fixed charge density governing membrane phenomena(Ⅳ):Further study of activity coefficients and mobilities of small ions in charged membranes.J.Phys.Chem.,1972,76(17):2447-2452

共引文献3

同被引文献51

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部