摘要
研究了年龄递进的人口分布参数控制方程,当控制变量β(t)发生改变时,可以找到两个阶梯函数βn(t)和βn(t)同时逼近β(t),并得出当n→∞时,Pn(r,t)和Pn(r,t)也同时逼近P(r,t).
Mainly studying the control equation of population's distribution parameter. When the control variable, β(t) is changed. We can find two step functions such as ^βn(t) and_βn(t), Meanwhile approximating β(t). Moreover, having a result that n →∞, the sum of the population keep invariantly.
出处
《数学的实践与认识》
CSCD
北大核心
2007年第11期127-131,共5页
Mathematics in Practice and Theory
基金
黑龙江省自然科学基金项目(TA2005-19)
黑龙江省高校骨干教师创新能力项目(10539026)资助
关键词
人口分布参数控制方程
阶梯函数
逼近
the eontrol of the population's distribution parameter
step funetion
approximation
the sum of bearing rate