期刊文献+

基于量子逻辑的自动机理论的拓扑性质

Topological Characterizations of Automata Theory Based on Quantum Logic
下载PDF
导出
摘要 研究了基于量子逻辑的自动机理论(简称l-值自动机理论)的拓扑性质.给出了successor算子和source算子的另一种定义,讨论了successor算子、source算子和l-值子自动机之间的关系,得到了successor算子、source算子和l-值子自动机的某种等价性.进一步描述了由successor算子、source算子和l-值子自动机来构造拓扑.得出了successor算子、source算子和l-值子自动机的一些基本性质,证明了在&关于∨分配时,successor算子、source算子以及l-值子自动机的某些特殊性质.因而得到了由它们构造拓扑的一个较弱的条件,并且澄清了三者构造拓扑时的等价性. In this paper, some topological characterizations of automata theory based on quantum logic (abbr. l-valued automata theory) are discussed. First, l-valued successor and source operators are redefined and the equivalences of l-valued successor operators, source operators and l-valued subautomata are demonstrated. Afterwards, some topological characterizations in terms of the l-valued successor, source operators and l-valued subautomata are described, and then some fundamental properties of l-valued successor operators, source operators and l-valued subautomata are characterized. Particularly, when the multiplication (&) is distributive over the union in the truth-value lattices, some of the special properties of l-valued successor operators, source operators and l-valued subautomata are verified. So a weaker limitation to form a topology is obtained. Finally, it is shown that the l-valued topologies in terms of the l-valued successor, source operators and l-valued subautomata are equivalent.
作者 郭秀红
出处 《软件学报》 EI CSCD 北大核心 2007年第6期1282-1286,共5页 Journal of Software
关键词 量子逻辑 自动机 successor算子 source算子 子自动机 拓扑 quantum logic automata successor operator source operator subautomata topology
  • 相关文献

参考文献1

二级参考文献15

  • 1[1]Benioff P. The computer as a physical system: a microsopic quantum mechanical Hamiltonian model of computers as represented by Turing machines. Physical Review Letters, 1982,48(23):1581~1585.
  • 2[2]Feynman RP. Simulating physics with computers. International Journal of Theoretical Physics, 1986,21(6-7):467~488.
  • 3[3]Feynman RP. Quantum mechanical computers. Foundation of Physics, 1986,16(6):507~531.
  • 4[4]Deutsh D. Quantum theory, the Church-Turing principle and the universal quantum computer. Proceedings of the Royal Society of London A, 1985,400(1818):97~117.
  • 5[5]Shor PW. Polynomial-Time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Journal on Computing, 1997,26(5):1484~1509.
  • 6[6]Grover L. Quantum mechanics helps in searching for a needle in a haystack. Physical Review Letters, 1997,79(2):326~328.
  • 7[7]Lloyd S. A potentially realizable quantum computer. Science, 1993,261(5128):1569~1571.
  • 8[8]Cirac JI, Zoller P. Quantum computations with cold trapped ions. Physical Review Letters, 1995,74(20):4091~4094.
  • 9[9]Moore C, Crutchfield JP. Quantum automata and quantum grammars. Theoretical Computer Science, 2000,237(1-2):275~306.
  • 10[10]Gudder S. Basic Properties of Quantum Automata. Foundation of Physics, 2000,30(2):301~319.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部