期刊文献+

背包类问题的并行O(2^(5n/6))时间-空间-处理机折衷(英文)

A Parallel Time-Memory-Processor Tradeoff O(2^(5n/6)) for Knapsack-Like NP-Complete Problems
下载PDF
导出
摘要 将串行动态二表算法应用于并行三表算法的设计中,提出一种求解背包、精确的可满足性和集覆盖等背包类NP完全问题的并行三表六子表算法.基于EREW-PRAM模型,该算法可使用O(2n/8)的处理机在O(27n/16)的时间和O(213n/48)的空间求解n维背包类问题,其时间-空间-处理机折衷为O(25n/6).与现有文献的性能对比分析表明,该算法极大地提高了并行求解背包类问题的时间-空间-处理机折衷性能.由于该算法能够破解更高维数的背包类公钥和数字水印系统,其结论在密钥分析领域具有一定的理论和实际意义. A general-purpose parallel three-list six-table algorithm that can solve a number of knapsack-like NP-complete problems is developed in this paper. This kind of problems includes knapsack problem, exact satisfiability problem, set covering problem, etc. Running on an EREW PRAM model, The proposed parallel algorithm can find a solution of these problems of size n in O(2^7n/16) time, with O(2^13n/48) space and O(2^n/8) processors, resulting in a time-space-processor tradeoff of O(2^5n/6). The performance analysis and comparisons show that it is both work and space efficient, and thus is an improved result over the past researches. Since it can break greater variables knapsack-based cryptosystems and watermark, the new algorithm has some cryptanalytic significance.
出处 《软件学报》 EI CSCD 北大核心 2007年第6期1319-1327,共9页 Journal of Software
基金 国家自然科学基金No.60603053 国家教育部重点基金No.105128~~
关键词 NP完全问题 并行算法 时间-空间-处理机折衷 背包问题 NP-complete problem parallel algorithm time-space-processor tradeoff knapsack problem
  • 相关文献

参考文献3

二级参考文献39

  • 1Chor B,Rivest RL.A knapsack—type public key cryptosystem based on arithmetic in finite fields.IEEE Transactions on Information Theory,1988,34(5):901-909.
  • 2Laih C—S,Lee J-Y,Ham L,Su Y—K.Linearly shift knapsack public—key cryptosystem.IEEE Journal of Selected Areas Communication,1989,7(4):534-539.
  • 3Dantchev S.Improved sorting—based procedure for integer programming.Mathematical Programming,Serial A,2002,92:297-300.
  • 4Schroeppel R,Shamir A.A T=O(2^n/2),S=O(2^n/4)algorithm for certain NP—complete problems.SIAM Journal of Computing,1981,10(3):456-464.
  • 5Ferreira AG.A parallel time/hardware tradeoff T.H=O(2^n/2)for the knapsack problem.IEEE Transactions on Computing,1991,40(2):221-225.
  • 6Lou DC,Chang CC.A parallel two—list algorithm for the knapsack problem.Parallel Computing,1997,22:1985-1996.
  • 7Chang HK—C,Chen JJ-R,Shyu S-J.A parallel algorithm for the knapsack problem using a generation and searching technique.Parallel Computing,1994,20(2):233-243.
  • 8Ferreira AG.Efficient parallel algorithms for the knapsack problem.In:Cosnard M,Ba-on MH,Vanneschi M,ed.Proceedings of the IFIP WG 10.3 Working Conference on Parallel Processing.North—Holland:Elsevier Science Publishers,1988.169~179.
  • 9Cheng GL.The Design and Analysis of Parallel Algorithms.Bering:Higher Education Press,1994.35-37(in Chinese).
  • 10M R Garey,D S Johnson.Computers and Intractability:A Guide to the Theory of NP-Completeness.San Francisco:W H Freeman and Co,1979

共引文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部