期刊文献+

无线多媒体通信网适应带宽配置在线优化算法 被引量:4

An Online Adaptive Bandwidth Allocation Optimization Algorithm for Wireless Multimedia Communication Networks
下载PDF
导出
摘要 基于强化学习的方法,提出一种无线多媒体通信网适应带宽配置在线优化算法,在满足多类业务不同QoS(quality of service)要求的同时,提高网络资源的利用率.建立事件驱动的随机切换分析模型,将无线多媒体通信网中的适应带宽配置问题转化为带约束的连续时间Markov决策问题.利用此模型的动态结构特性,结合在线学习估计梯度与随机逼近改进策略,提出适应带宽配置在线优化算法.该算法不依赖于系统参数,如呼叫到达率、呼叫持续时间等,自适应性强,计算量小,能够收敛到全局最优,适用于复杂应用环境中无线多媒体通信网适应带宽配置的在线优化.仿真实验结果验证了算法的有效性. The issue of QoS (quality of service) provisioning for adaptive multimedia in wireless communication networks is considered. A reinforcement learning based online adaptive bandwidth allocation optimization algorithm is proposed. First, an event-driven stochastic switching model is introduced to formulate the adaptive bandwidth allocation problem as a constrained continuous-time Markov decision problem. Then, an online optimization algorithm that combines policy gradient estimation by learning and stochastic approximation is derived This algorithm can online handle the constrained optimization problem efficiently without explicit knowledge of the underlying system parameters. Moreover, this algorithm does not require the computation of performance potentials or other related quantities (e.g. Q-factors), which is necessary in previous schemes, and therefore saves computational cost significantly. Simulation results demonstrate the effectiveness of the proposed algorithm.
出处 《软件学报》 EI CSCD 北大核心 2007年第6期1491-1500,共10页 Journal of Software
基金 国家自然科学基金No.60574065 国家高技术研究发展计划(863)No.2006AA01Z114 安徽省自然科学基金Nos.050420301 070412063 中国科学技术大学研究生创新基金No.KD2006036~~
关键词 适应带宽配置 MARKOV决策过程 策略优化 强化学习 随机逼近 QoS(quality of service)保证 adaptive bandwidth allocation Markov decision processes policy optimization reinforcement learning stochastic approximation QoS (quality of service) provisioning
  • 相关文献

参考文献2

二级参考文献26

  • 1M Naghshineh, M Schwarz. Distributed call admission control in mobile/wireless networks. IEEE Journal on Selected Areas in Communications, 1996, 14(4): 711~717
  • 2A Alwan, R Bagrodia, N A Bambos, et al. Adaptive mobile multimedia networks. IEEE Personal Communications, 1996, 3(2): 34~51
  • 3M Naghshineh, M Willebeek-LeMair. End-to-end QoS provisioning in multimedia wireless/ mobile networks using an adaptive framework. IEEE Communication Magazine, 1997, 35(11): 72~81
  • 4Yang Xiao, C L Philip Chen. Improving degradation and fairness for mobile adaptive multimedia wireless networks. The 10th Int'l Conf on Computer Communications and Networks. Phoenix, Arizona, USA, 2001
  • 5V Bharghavan, K Lee, S Lu, et al. The TIMELY adaptive resource management architecture. IEEE Personal Communication Magazine, 1998, 5(4): 20~31
  • 6A K Talukdar, B R Badrinath, A Acharya. Rate adaptation schemes in networks with mobile hosts. The 4th Annual ACM/IEEE Int'l Conf on Mobile Computing and Networking. Dallas, Texas, USA, 1998
  • 7T Kwon, Y Choi, C Bisdikian. QoS provisioning in wireless/mobile multimedia networks using an adaptive framework. Wireless Networks, 2003, 9(1): 51~59
  • 8T Kwon, Y Choi, S Das. Bandwidth adaptation algorithms for adaptive multimedia services in mobile cellular networks. Wireless Personal Communications, 2002, 22(3): 1~21
  • 9T Kwon, J Choi, Y Choi, et al. Near optimal bandwidth adaptation algorithm for adaptive multimedia services in wireless/mobile networks. Vehicular Technology Conference'99. Amsterdam, Netherlands, 1999
  • 10K Lee. Adaptive network support for mobile multimedia. ACM MobiCom'95. Berkeley, CA, 1995

共引文献4

同被引文献33

  • 1Global Action Plan. An inefficient truth [EB/OL]. http-.//www, globalaction, org. uk/, Global Action Plan Report, 2007.
  • 2Marsan M A, Chiaraviglio L, Ciullo D, et al. Optimal energy savings in cellular access networks[C]// IEEE International Workshop on Green Communications. Dresden, Germany: IEEE Press, 2009: 1-5.
  • 3Zhou S, Gong J, Yang Z X, et al. Green mobile access network with dynamic base station energy saving[C]// Proceedings of ACM MobiCom. Beijing, China: ACM Press, 2009: 1-3.
  • 4Gong J, Zhou S, Niu Z S, et al. Traffic-aware base station sleeping in dense cellular networks [C]// Proceedings of 18th International Workshop on Quality of Service. Beijing, China: IEEE Press, 2010: 1-2.
  • 5Saker L, Elayoubi S E, Chahed T. Minimizing energy consumption via sleep mode in green base station[C]// Proceedings of IEEE Wireless Communications and Networking Conference. Sydney, Australia: IEEE Press, 2010.. 1-6.
  • 6Luperello D, Mukherjee S, Paul S. Streaming media traffic: An empirical study[C]// Proceedings of the 6th International Web Caching Workshop and Delivery Workshop. Boston, USA, 2002.
  • 7Puterman M L. Markov Decision Processes: Discrete Stoctaastic Dynamic Programming [ M]. New York: John Wiley & Sons, 1994.
  • 8Chang S H. A policy improvement method for constrained average Markov decision processes [J]. Operations Research Letters, 2007, 35(4): 434-438.
  • 9Cao C R. Semi-Markov decision problem and performance sensitivity analysis[J]. IEEE Transactions on Automatic Control, 2003, 48(5) : 758-768.
  • 10Global A P.An inefficient truth,http://www.globalaction.org.uk/,Global Action Plan Rep,2007.

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部