期刊文献+

聚心火焰与激波相互作用的数值研究 被引量:4

Numerical investigations on interaction of implosion flame with shock
下载PDF
导出
摘要 基于带化学反应的2维轴对称Euler方程,利用带有monotonized centered(MC)限制器的波传播算法,在两端敞开的圆桶中对惰性介质的聚心激波和氢气-空气混合物的聚心火焰与激波的相互作用进行了数值模拟。数值结果表明,在惰性介质中激波在轴心的每次汇聚均可成长为马赫干,马赫干的追赶使激波得到一定程度的增强,但整体还呈下降趋势。在氢气-空气混合物中,燃烧诱导的激波,由于与火焰的反复作用,使激波在轴心处产生马赫干的频率和强度皆高于惰性介质中的情形。同时,火焰在与激波的相互作用过程中发生失稳变形,使其形状呈扁平头部的蘑菇云。 Based on the two-dimensional axisymmetric Euler equations coupling with chemical reactions, the phenomena of implosion wave in the inertia medium and interaction of the implosion flame with shock in the hydrogen-air mixture were numerically studied by using wave propagation algorithm with monotonized centered (MC) limiter in the cylindrical tube with two open ends. In the inertia medium the simulations show that toroidal shocks implode and reflect at the axis of symmetry of the cylindrical tube. Every implosion can form a Mach stem that propagates towards the previous Mach stems, which enhances shock but decreases in the whole because of absence of energy. In the hydrogen-air mixture the calculated results show that shock induced by combustion repeatedly interacts with implosion flame in the cylindrical tube, which leads to the fact that frequency and intensity of Mach stems at the axis of the cylindrical tube are higher than these in the inertia medium. Simultaneously, repeated shock-flame interactions cause instability and distortion of the flame, and then form the shape of collapsing flame front.
出处 《爆炸与冲击》 EI CAS CSCD 北大核心 2007年第3期204-209,共6页 Explosion and Shock Waves
基金 国家自然科学基金项目(10472047)
关键词 爆炸力学 马赫干 数值模拟 聚心火焰 激波 mechanics of explosion Mach stem numerical simulation implosion flame shock
  • 相关文献

参考文献8

  • 1Lu F K,Meyers J M,Wilson D R.Experimental study of a pulse detonation rocket with Shchelkin spiral[C]Jiang Z.Proceedings of the 24th International Symposium on Shock Waves Vol2.Beijing,China:Tsinghua University Press and Spring-Verlag Berlin Heidelberg,2005:825-830.
  • 2Roy G D,Frolov S M,Borisov A A,et al.Pulse detonation propulsion:Challenges,current starues and ruture perspective[J].Progress in Energy and Combustion Science,2004,30:545-672.
  • 3Tangirala V E,Dean A J,Chapin D M.Pulsed detonation engine processes:Axperiments and simulations[J].Combust Sci and Tech,2004,76:1 779-1 808.
  • 4Lieberman D H,Parkin K L,Shepherd J E.Detonation initiation by a hot turbulent jet for use in pulse detonation engines[R].AIAA 2002-3909.
  • 5Jackson S I,Grunthaner M P,Shepherd J E.Wave implosion as an initiation mechanism for pulse detonation engines[R].AIAA 2003-4820.
  • 6Lee J H S,Moen I O.The mechanism of transition from deflagration to detonation in vapor cloud explosions[J].Progress in Energy and Combustion Science,1980,6:359-389.
  • 7董刚,于陆军,唐敖,范宝春.环形火焰引发爆震的数值研究[J].推进技术,2005,26(4):348-353. 被引量:6
  • 8Leveque R J.Wave propagation algorithms for multidimensional hyperbolic systems[J].Journal of Computarional Physics,1997,131:327-353.

二级参考文献11

  • 1Chan C. Collision of a shock wave with obstacles in a combustible mixture [ J]. Combust. Flame, 1995, 100:341 - 348.
  • 2Li C, Kailasanath K. Detonation initiation in pulse detonation engines [ R ]. AIAA 2003-1170.
  • 3Gordon S, Mcbride B J. Computer program for calculation of complex chemical equilibrium compositions and applications [ R]. NASA-RP-1311, 1994.
  • 4Leveque R J. Wave propagation algorithms for multidimensional hyperbolic systems [ J ]. J. Computational Physics, 1997, 131:327-353.
  • 5Kailasanath K. Recent developments in the research on pulse detonation engines [ R]. AIAA 2002-0470.
  • 6Lee J H S, Moen I O. The mechanism of transition from deflagration to detonation in vapor cloud explosions [ J ].Progress in Energy and Combustion Science, 1980, 6:359 - 389.
  • 7Khokhlov A M, Oran E S, Thomas G O. Numerical simulation of deflagration-to-detonation transition: The role of shock-flame interactions in turbulent flames [ J ]. Combust. Flame, 1999, 117:323-239.
  • 8董刚,刘宏伟,陈义良.通用甲烷层流预混火焰半详细化学动力学机理[J].燃烧科学与技术,2002,8(1):44-48. 被引量:48
  • 9韩启祥,王家骅,王波.预混气爆震管中爆燃到爆震转捩距离的研究[J].推进技术,2003,24(1):63-66. 被引量:12
  • 10张群,严传俊,范玮,黄希桥,王治武.多循环脉冲爆震发动机概念化设计[J].推进技术,2003,24(6):500-504. 被引量:9

共引文献5

同被引文献44

  • 1董刚,唐敖,叶经方,范宝春.激波聚焦诱导点火和爆轰的数值研究[J].爆炸与冲击,2005,25(5):437-444. 被引量:8
  • 2滕宏辉,张德良,李辉煌,姜宗林.用环形激波聚焦实现爆轰波直接起爆的数值模拟[J].爆炸与冲击,2005,25(6):512-518. 被引量:14
  • 3Roy G D, Frolov S M, Borisov A A, et al. Pulse detonation propulsion: challenges, current statues and future perspective [ J]. Progress in Energy and Combustion Science, 2004, 30 ( 6 ) :545 - 672.
  • 4Tangirala V E, Dean A J, Chapin D M. Pulsed detonation engine processes: experiments and simulations [ J]. Combust Sci. and Tech. , 2004, 176 (10).
  • 5Levin V A, Nechaev J N, Tarasoy A I. A new approach to organizing operation cycles in pulse detonation engines [A]. High-Speed Deflagration and detonation: fundamentals and Control[ C ]. Moscow 2001:223 -238.
  • 6Leyva Ivett A, Venkat Tangirala, Dean Anthony J. Investigation of unsteady flow field in a 2-stage PDE resonator [J]. AIAA 2003-715.
  • 7Leveque R J. Wave propagation algorithms for multidimensional hyperbolic systems[J]. J Computational Physics, 1997, 131(2) : 327 -353.
  • 8Zhang Y, Bray K N C. Brief communication characterization of impinging jet flames [ J ]. Combustion and flame, 1999,116(4) :671-674.
  • 9Foat T, Yap K P, Zhang Y. The visualization and mapping of turbulent premixed impinging flame [ J ]. Combustion and flame ,2001,125 (1-2) :839 - 851.
  • 10Lu F K, Meyers J M, Wilson D R. Experimental study of a pulse detonation rocket with Shchelkin spiral [ A ]. Jiang Z. Proceedings of the 24 th International Symposium on Shock Waves Vol2 [ C ]. Beijing , China : Tsinghua University Press and Spring-Verlag Berlin Heidelberg, 2005: 825 - 830.

引证文献4

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部