期刊文献+

一个退化四阶抛物方程弱解的惟一性 被引量:1

The Uniqueness of Weak Solution for a Degenerate Fourth Order Parabolic Equation
下载PDF
导出
摘要 证明退化四阶抛物方程ut+Δ(Δup-2Δu)+λup-2u=0,x∈Ω,t>0,p>2在假定具有自然边界条件u=Δu=0,x∈Ω,t>0,以及初始值条件u(x,0)=u0(x),x∈Ω下,存在弱解惟一性. In this paper, we consider a fourth order degenerate parabolic equation δu/δt + △(|△u|p-2△u) +λ|u|p-2u = 0,x∈Ω,t 〉 0,p 〉 2. Under some assumptions on the natural boudary conditions u = △u = 0,x ∈ δΩ,t 〉 0, and the initial condition u(x,0) = u0(x),x∈Ω, we have proved the existence of uniqueness of weak solution.
作者 郭金勇
出处 《广西科学》 CAS 2007年第2期117-119,共3页 Guangxi Sciences
关键词 抛物方程 弱解 惟一性 parabolic equation, weak solution ,uniqueness
  • 相关文献

参考文献4

  • 1JIRR BENEDIKT.Uniqueness theorem forp-biharmonic equations[J].Electronic Journal of Differential Equations,2002,53:1-17.
  • 2JI Ri BENEDIKT.On simplicity of spectra of pbiharmonic equations[J].Nonlinear Ann,2004(58):835-853.
  • 3PAVEL DRáBEK,MITSUHARU OTANI.Global bifurcation result for the p-biharmonic operator[J].Electronic Journal of Differential Equations,2001,48:1-19.
  • 4LIU CHANGCHUN,GUO JINYONG.Weak solutions for a fourth order degenerate parabolic equation[J].Bulletin of the Polish Academy of Sciences Mathematics,2006,54(1):27-39.

同被引文献7

  • 1耿堤,田继青,邢小青.含临界非线性项的p-双调和方程正解的存在性[J].华南师范大学学报(自然科学版),2004,36(4):23-28. 被引量:1
  • 2陈亚淅,吴兰成.二阶椭圆型方程与椭圆型方程组[M].北京:科学出版社,1991:46.
  • 3CAD Y, YIN J X, JIN C H. A periodic problem of a semilinear pseudoparabolic equation [J]. Hindawi Publishing Corporation Abstract and Applied Analysis, 2011 : Art 363579, 27pp.
  • 4ELENA I K. Initial-boundary value problem for nonlinear pseudoparabolic equations in a critical case [J]. Electronic JDE, 2007 ( 109): 1 -25.
  • 5LIU C C, GUO J Y. Weak solutions for a fourth order de- generate parabolic equation[ J]. Bull Pol Aead Sci Math, 2006, 54 ( 1 ) : 27 - 39.
  • 6SIMON J. Compact sets in the space L^p(0, T;B)[ J ]. Ann Math Pura Appl, 1987,146 : 65 - 96.
  • 7郭慧敏,耿堤.类p-双调和方程Dirichlet问题无穷多解的存在性[J].华南师范大学学报(自然科学版),2009,41(1):18-21. 被引量:3

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部