摘要
本文研究一类含非局部源的椭圆型方程组{-A(∫_Ω|u|~kdx)Δ_pu=λv^m∫_Ωu~αv~βdx,x∈Ω-B(∫_Ω|u|~sdx)Δ_qv=μu^n∫_Ωu~γv~δdx,x∈Ω(1)并且带有Dirichlet零边界条件的正解存在性.这里Ω是R^N,N≥1中的有界区域,边界(?)Ω光滑.为了得到它的解,我们先考虑与之相应的局部椭圆型方程组-Δ_pu=λv^m,-Δ_qv=μu^n inΩ;u=v=0,on (?)Ω(2)正解的存在性.我们将应用上下解方法得到问题(1)和(2)的解.
In this work, we consider the existence of positive solution for the following nonlocal elliptic system:
{-A(∫Ω|u|^kdx)}△pu=λv^m∫Ωu^αv^βdx,x∈Ω,
-B(∫Ω|v|^sdx)△qv=μu^n∫Ω^uγvδdx,x∈Ω (0.1)
with zero Dirichlet boundary condition in a bounded domain Ω belong to R^N,N≥1.To obtain the solution, we establish the existence of positive solution for the corresponding stationary problem
-△pu=λv^m,-△qv=μu^n,x∈Ω(0.2)
with zero Dirichlet boundary condition . The method of sub- and super solution will be used for the existence of solutions for problems (0.1) and (0.2).
出处
《南京大学学报(数学半年刊)》
CAS
2007年第1期11-19,共9页
Journal of Nanjing University(Mathematical Biquarterly)
关键词
非局部抛物型方程组
非局部椭圆型方程组
正(弱)解
上下解方法
nonlocal parabolic system, nonlocal elliptic system, positive (weak) solution, method of sub-and super-solution.