期刊文献+

半替换环和半局部环的K_1-群(英文)

SEMIEXCHANGE RIGNS AND K_1-GROUPS OF SEMILOCAL RINGS
下载PDF
导出
摘要 本文定义环R为半替换环如果R/J(R)为替换环,它是替换环和半局部环的共同推广.研究了半替换环的一些性质,并回答了[8]中半局部环K_1-群的一个问题. A ring R in this note is defined to be a semiexchange ring if R/J(R) is an exchange ring which is a common generalization of an exchange ring and a semilocal ring. Some properties of semiexchange rings are investigated. Also we answer a question posed in [8] on K1-groups of semilocal rings.
作者 陈卫星
出处 《南京大学学报(数学半年刊)》 CAS 2007年第1期65-71,共7页 Journal of Nanjing University(Mathematical Biquarterly)
关键词 替换环 半替换环 半局部环 K1-群 exchange rings, semiexchange rings, semilocal rings, K1-groups
  • 相关文献

参考文献9

  • 1Amisture S A. Radical of Polynomial Rings. Canad. J. Math., 1956, 8: 355-361.
  • 2Anderson F W and Fuller K R. Rings and Categories of Modules. Springer-Verlag, New York, 1973, 165-166.
  • 3Chen W X and Tong W T. On Noncommutative VNL-Rings and GVNL-Rings. Glasgow Math. J., 2006,48: 11-17.
  • 4Lam T Y. A First Course in Noncommutative Rings. Springer-Verlag, New York, 1991, 24-25.
  • 5Lam T Y and Dugas A S. Quasi-duo Rings and Stable Range Decent. J. Pure Appl. Algebra, 2005, 195: 243-259.
  • 6Robinson D J S. A Course in the Theory of Groups. Springer-Verlag, New York,1982, 104-105.
  • 7Silvester J R. Introduction to Algebraic K-Theory. Chapman and Hall, London and New York, 1981, 132-138.
  • 8Tong W T. Algebraic K-Theory (in Chinese). Nanjing University Press, 2005, 86-95.
  • 9Wu T S and Chen P W. On Finitely Generated Projective Modules and Exchange Rings. Algebra Colloq., 2002, 9(4): 433-444.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部