期刊文献+

结构动力模型修正中的一类矩阵反问题 被引量:3

AN MATRIX INVERSE PROBLEM IN STRUCTURAL DYNAMIC MODEL UPDATING
下载PDF
导出
摘要 在实际工程中,由有限元模型得到的计算值与通过试验获得的测量值之间往往存在偏差,为了能够精确预测结构的动力响应,依据测量信息修正存在的动力模型是非常必要的.本文考虑用不完备复模态测量数据修正粘性阻尼矩阵的问题.在假定分析质量矩阵与分析刚度矩阵是精确的情况下,通过求解一个约束最优化问题,得到了满足特征方程的加权Frobenius范数意义下的最优对称非负定修正矩阵. There is a gap between predictions resulting from finite element model (FEM) and experimental results of a testing moelel or actual structure. Updating the existing dynamic model based on modal measured data is very important in order to predict actual behaviors of the structure precisely via the structural dynamic model. In this paper, the analytical mass and stiffness matrices are assumed correct and only the viscous damping matrix needs to be updated. By solving a constrained optimization problem, the optimal corrected semi-positive definite damping matrix complied with the required eigenvalue equation is found under a weighted Frobenius norm sense.
出处 《南京大学学报(数学半年刊)》 CAS 2007年第1期116-121,共6页 Journal of Nanjing University(Mathematical Biquarterly)
基金 江苏省自然科学基金计划项目.
关键词 反问题 有限元模型 粘性阻尼 模型修正 模态数据 inverse problem, finite element model, viscous damping, model updating, modal data
  • 相关文献

参考文献10

  • 1Friswell M I and Mottershead J E. Finite Element Moodel Updating in Structural Dynamics[M]. Dordrecht, Boston: Klumer Academic Publishers, 1995, 1-6.
  • 2Mottershead J E and Friswell M I. Model Updating in Structural Dynamics: a Surrey[J]. Journal of sound and Vibration, 1993, 167(3): 347-375.
  • 3Zhang Q W. Finite Element Model Updating for the Kap Shui Mun Ccable-Stayed Bridge[J]. Journal of Bridge Engineering, ASCE, 2000, 6(4): 285-293.
  • 4Oreta A W C and Tanabe T A. Element Identification of Member Properties of Framed Structures[J]. Journal of Structural Engineering, ASCE, 1994, 120(4): 1961-1976.
  • 5Zimmerman D C and Widengren M. Correcting Finite Element Modes using a Symmetric Eigenstructure Assignment Technique[J]. AIAA J, 1990, 28(9): 1670-1676.
  • 6Doebling S W. A Summary Review of Vibration-based Damage Identification Methods[J]. The Shock and Vibration Digest, 1998, 30: 91-105.
  • 7Pilkey D F. Computation of a Damping Matrix for Finite Element Model Updating[D]. Ph.D. Thesis, Dept. of Engineering Mechanics, Virginia Polytechnical Institute and State University, 1998.
  • 8孔翠芳,戴华.用不完全模态试验数据修正粘性阻尼矩阵[J].振动工程学报,2005,18(1):85-90. 被引量:11
  • 9张磊.对称非负定矩阵反问题解存在的条件[J].计算数学,1989,11(4):337-343. 被引量:61
  • 10Higham N J. Computing a Nearest Symmetric Positive Semidefinite Matrix[J]. Linear Algebra and its Applications, 1988, 103: 103-118.

二级参考文献12

  • 1戴华.用试验数据修正刚度矩阵[J].航空学报,1994,15(9):1091-1094. 被引量:12
  • 2戴华.对称矩阵反问题解的稳定性[J].南京航空航天大学学报,1994,26(1):133-139. 被引量:3
  • 3张磊,湖南数学年刊,1987年,1期,58页
  • 4孙继广,计算数学,1987年,9卷,2期,206页
  • 5张磊,计算数学,1987年,9卷,4期,431页
  • 6张磊,湖南数学年刊,1986年,2期,43页
  • 7Chen S Y , Ju M S, Tsuel Y G. Estimation of system matrices by dynamic condensation and application to structural modlficatlon[J]. AIAA J, 1995,3: 2 199-2 204.
  • 8Halevi Y, Kenigsbuch R. Model updating of the complex modeshapes and the damping matrix[J].Inverse Problems in Engineering. 2000,8: 143-162.
  • 9Higham N J. Computing a nearest symmetric positive semidefinite matrix [J]. Linear Algebra Appl. 1988,103:103-118.
  • 10Minas C, Inman D J. Identification of a nonproportional damping matrix from incomplete modal information[J]. ASME J of Vibration and Acoustics.1991,113: 219-224.

共引文献69

同被引文献15

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部