期刊文献+

一种新的分组双密密钥密码方案

New Grouping Double-Key Cryptogram Scheme
下载PDF
导出
摘要 RSA加密算法是第一个较为完善的公开密钥算法,混沌密码算法是一种快速加密算法,在安全性要求较高的领域中,有着非常广阔的应用前景.在分析了RSA公钥加密系统和混沌加密各自的优点及其存在的安全问题的基础上,提出了一种新的分组双密密钥密码方案.这种密码方案是一种并联的混合密码系统.理论分析表明,这种方案要比单独使用其中任何一种加密方案保密性能好,代价低. RSA is the first comparatively perfect Public Key Algorithm. As a fast encryption algorithm, the chaotic cryptographic method has quite wide applications in the field of security. In this paper, through analyzing the advantages and security of RSA eneryption system and chaotic encrypt, a new grouping double-key cryptogram scheme is presented. It is a shunt-wound hybrid crypto-systcm. The results of theoretic analysis show that the secrecy capability and cost of the proposed scheme are better than those of any scheme mentioned in the preamble.
出处 《东莞理工学院学报》 2007年第3期13-17,共5页 Journal of Dongguan University of Technology
关键词 RSA公钥密码 混沌加密 分组双密密钥密码 RSA encryption algorithm chaotic encrypt grouping double-key cryptogram
  • 相关文献

参考文献7

二级参考文献21

  • 1[1]Pecora L M, Carroll T L. Synchronization in chaotic systems[J]. Phys Rev Lett, 1990,64(8):821~824.
  • 2[2]Pecora L M, Carroll T L. Driving systems with chaotic signals[J]. Phys Rev A, 1991,44:2374~2383.
  • 3[3]Short K M. Steps toward unmasking secure communicatios[J]. Int J Bifurcation & Chaos, 1994,4 (4):959~977.
  • 4[4]Short K M. Unmasking a modulated chaotic communications scheme [J]. Int J Bifurcation & Chaos,1996,6(2):367~375.
  • 5[5]Dedieu H, Ogorzalek M J. Identifiability and identification of chaotic systems based on adaptive synchronization [J]. IEEE Trnas Circuits & Syst I,1997,44(10): 948~962.
  • 6[6]Kocarev L, Parliz U. General approach for chaotic synchronization with applications to communication [J]. Phys RevLett, 1995,74(25) :5028~5031.[J]. Phys RevLett, 1995,74(25) :5028~5031.
  • 7[7]Kocarev L, Parlitz U. Generalized synchronization,predictability, and equivalence of unidirectionally coupled dynamical systems [J]. Phys Rev Lett,1996,76(11): 1816~1819.
  • 8[8]Parliz U, Junge L, Kocarev L. Synchronizationbased parameter estimation from time series [J].Phys Rev E,1996,54(6):6253~6259.
  • 9[9]Kelber K. N-dimensional uniform probability distribution in nonlinear auto-regressive filter structures [J]. IEEE Trans Circ & Syst I,2000,47(9):1413~[J]. IEEE Trans Circ & Syst I,2000,47(9):1413~1418.
  • 10[10]Baranousky A, Daems D. Design o{ one-dimensional chaotic maps with prescribed statistical properties [J]. Iht J of Bifurcation and Chaos, 1995,5(6): 1585[J]. Iht J of Bifurcation and Chaos, 1995,5(6): 1585~1598.

共引文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部