期刊文献+

基于AdaBoost方法的蛋白质磷酸化修饰规则抽取 被引量:1

Protein phosphorylation rules extraction based on AdaBoost
下载PDF
导出
摘要 磷酸化是最重要的蛋白质翻译后修饰之一,随着蛋白质磷酸化数据的增加,利用已有数据对蛋白质磷酸化修饰进行规律挖掘和预测的条件日益成熟。设计新的基于AdaBoost(adaptivc boost)分类器的规则抽取算法和利用修饰位点附近氨基酸性质作为特征并采用AdaBoost方法进行特征选择和分类器训练的磷酸化修饰位点预测方法AproPhos(using amino acid pro- perties for phosphorylation sites prediction),使其在具有较高预测精度的同时可以对预测结果进行可理解的规则解释,规则抽取还有助于发现新的磷酸化修饰氨基酸性质分布规律,对揭示生命活动规律和药物开发有着重要意义。 Protein phosphorylation is one ofthe most important post-translational modifications. With the recent increase in protein phosphorylation sites identified, phosphorylation rules mining and potential phosphorylation sites prediction may facilitate the research of phosphorylated protein. A new algorithm for rule extraction from AdaBoost (adaptive boost) and a new phosphorylation sites prediction method named AproPhos (using amino acid properties for phosphorylation sites prediction) using AdaBoost as amino acid properties feature selection and classification are designed. They can provide understandable explanation of the prediction at the same time they perform higher prediction accuracy. Rule extraction may be helpful to discover new rules of amino acid properties distribute around sites and be significant for the research of life sciences and medicine development.
出处 《计算机工程与设计》 CSCD 北大核心 2007年第11期2623-2628,共6页 Computer Engineering and Design
基金 国家973重点基础研究发展计划基金项目(2002CB713807) 国家科技攻关计划基金项目(2004BA711A21) 中国科学院计算技术研究所领域前沿青年创新基金项目。
关键词 磷酸化 规则抽取 预测 氨基酸性质 ADABOOST算法 蛋白质 phosphorylation rule extraction prediction amino acidproperties AdaBoost
  • 相关文献

参考文献15

  • 1Hunter T.Signaling-2000 and beyond[J].Cell,2000,100:113-127.
  • 2黄珍玉,于雁灵,方彩云,杨芃原.质谱鉴定磷酸化蛋白研究进展[J].质谱学报,2003,24(4):494-500. 被引量:16
  • 3Schwartz D,Gygi S P An iterative statistical approach to the identification ofprotein phosphorylation motifs from large-scale date sets[J].Nature Biotechnology,2005,23(11):1391-1398.
  • 4Obenauer J C,Cantley L C,Yaffe M B.Scansite 2.0:Proteomewide prediction of cell signaling interactions using short sequence motifs[J].Nucleic Acids Research,2003,31(13):3635-3641.
  • 5Blom N,Sichefitz-Ponten T,Gupta R,et al.Prediction of posttranslational glycosylation and phosphorylation ofproteins from the amino acid sequence[J].Proteomics,2004,4(6):1633-1649.
  • 6Hjerrild M,Stensballe A,Rasmussen T E,et al.Identification of phosphorylation sites in protein kinase A substrates using artificial neural networks and mass spectrometry[J].Journal of Proteome Research,2004,(3):426-433.
  • 7Berry E A,Dalby A R,Yang Z R.Reduced bio basis function neural network for identification of protein phosphorylation sites:Comparison with pattern recognition algorithms[J].Comput Biol Chem,2004,28(1):75-85.
  • 8Kim J H,Lee J,Oh B,et al.Prediction of phosphorylation sites using SVMs[J].Bioinformatics,2004,20(17):3179-3184.
  • 9Zhou F E,Xue Y,Chen G L et al.GPS:A novel group-based phosphorylation predicting and scoring method[J].Biochemical and Biophysical Research Communications,2004,325[4):1443-1448.
  • 10Huang H D,Lee T Y,Tzeng S W,et al.KinasePhos:A web tool for identifying protein kinase-specific phosphorylation sites[J].Nucleic Acids Research,2005,33(web server issue):226-229.

二级参考文献66

  • 11.Valiant L G.A Theory of Learnable.Communication of ACM,1984; 27:1134-1142
  • 22.Kearns M,Valiant L G.Learning Boolean Formulae or Factoring.Te- chnical Report TR-1488,Cambridge,MA:Havard University Aiken Computation Laboratory,1988
  • 33.Kearns M,Valiant L G.Crytographic Limitation on Learning Boolean Formulae and Finite Automata.In:Proceedings of the 21st Annual ACM Symposium on Theory of ComputingNew YorkNY:ACM press, 1989:433-444
  • 44.Schapire R E.The Strength of Weak Learnability.Machine Learning, 1990;5:197-227
  • 55.Freund Y.Boosting a Weak Algorithm by Majority.Information and Computation,1995;121(2):256-285
  • 66.Freund Y,Schapire R E.A Decision-Theoretic Generalization of On- Line Learning and an Application to Boosting.Journal of Computer and System Sciences,1997;55(1):119-139
  • 78.Schapire R EFreund YBartlett Y,et al.Boosting the Margin:A New Explanation for the Effectiveness of Voting Methods.The Annals of Statistics,1998;26(5):1651-1686
  • 89.Schapire R E.A Brief Introduction of Boosting.InProceedings of the 16th International Joint Conference on Artificial Intelligence,1999
  • 910.Schapire R E.A Brief Introduction of Boosting. In: Proceedings of the 16th International joint Conference on Artificial Intelligence1999
  • 10Jonscher KR, Yates JR II. Matrix-assisted Laser Desorption Ionization/Quadrupole Ion Trap Mass Spectrometry of Peptides. Application to the Localization of Phosphorylation Sites on the P Protein From Sendai Virus [J]. J Biol Chem, 1997, 272:1 735-1 741.

共引文献80

同被引文献12

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部