摘要
本文考虑局部对称的共形平坦黎曼流形,推广了文[1]关于调和映射和全测地映射的一个结论。
In the present note we prove the following:
Theorem Let f:M^n→M^m be a harmonic and relative affine mapping between Riemannian manifolds, M^m be a locally symetric and conformally flat Riemannian manifold, and M^n be a compact Riemannian manifold with positive Ricci curvatures.If each sectional carvature of M^n is not less
than ?e( f ) K where K is the maximum of the sectional curvatures of M^m, and e ( f ) is the energy density of f, then f is a totally geodesic map.
出处
《赣南师范学院学报》
1990年第3期24-26,共3页
Journal of Gannan Teachers' College(Social Science(2))
关键词
调和映射
全测地映射
共形平坦
harmoic map, totally geodesic map , Iacally symmetric , conformally flat.