期刊文献+

一种基于递增估计GMM的连续优化算法 被引量:9

A Continuous Optimization Algorithm Based-on Progressive Estimation of Guassian Mixture Model
下载PDF
导出
摘要 目前的分布估计算法(esti mation of distribution algorithms)中概率模型的学习或多或少存在着对先验知识的依赖,而这些先验知识往往是不可预知的.针对这一问题,文中提出采用集成学习(ensemble learning)的思想实现EDAs中概率模型结构和参数的自动学习,并提出了一种基于递增学习策略的连续域分布估计算法,该算法采用贪心EM算法来实现高斯混合模型(GMM)的递增学习,在不需要任何先验知识的情况下,实现模型结构和参数的自动学习.通过一组函数优化实验对该算法的性能进行了考查,并与其它同类算法进行了比较.实验结果表明该方法是有效的,并且,相比其它同类EDAs,该算法用相对少的迭代,可以得到同样或者更好的结果. In Estimation of Distribution Algorithms proposed in published literatures, learning of probabilistic model is dependent more or less on the prior-knowledge of the structure of model, which is unavailable in the process of evolutionary optimization. This paper proposes a new idea, which learns probabilistic model in EDAs by an approach similar to ensemble learning in machine learning, to implement automatic learning of both model parameter and model structure. According to this idea, a new EDAs for continuous optimization based on progressive learning of Gaussian Mixture Model is proposed. A greedy EM algorithm is adopted to estimation GMM in a progressive manner, which has the ability of learning the model structure and parameters automatically without any requirement of prior knowledge. A set of experiments on selected function optimization problems are performed to evaluate, and to compare with other EDAs, the efficiency and performance of the new algorithm. The experimental results confirm the feasibility and effect of the idea, and also show that, with a relative small number of generations, the new algorithm can perform better or as well as compared EDAs.
出处 《计算机学报》 EI CSCD 北大核心 2007年第6期979-985,共7页 Chinese Journal of Computers
基金 国家自然科学基金(60401015 60572012) 安徽省自然科学基金(050420201)资助.
关键词 分布估计算法 连续优化 贪心EM算法 递增学习 高斯混合模型 estimation of distribution algorithms continuous optimization greedy EM progres-sive learning Gaussian mixture model
  • 相关文献

参考文献23

  • 1Mühlenbein H,Paaβ G.From recombination of genes to the estimation of distributions I.Binary parameters//Proceedings of the 5th Parallel Problem Solving from Nature (PPSN V).Amsterdam,The Netherlands,1998:178
  • 2Pelikan M,Goldberg D E,Lobo F.A survey of optimization by building and using probabilistic models.IlliGAL Technical Report 99018,1999
  • 3Mühlenbein H.The equation for response to selection and its use for prediction.Evolutionary Computation,1997,5 (3):303
  • 4Pelikan M,Mühlenbein H.The bivariate marginal distribution algorithm//Proceedings of the Soft Computing-Engineering Design and Manufacturing.London,1999:521
  • 5Pelikan M,Goldberg D E,Cantú-Paz E.BOA:The Bayesian optimization algorithm//Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-99).Orlando FL:Morgan Kaufmann Publishers,1999,Ⅰ:525
  • 6Harik G R,Lobo F G,Goldberg D E.The compact genetic algorithm.IEEE Transactions on Evolutionary Computation,1999,3(4):287
  • 7de Boner J S,Isbell C L,Viola P.MIMIC:Finding optima by estimating probability densities//Proceedings of the Neural Information Processing Systems.Cambridge,MA:The MIT Press,1997,9:424
  • 8Sebag M,Ducoulombier A.Extending population-based incremental learning to continuous search spaces//Proceedings of the 5th Parallel Problem Solving from Nature (PPSN V).Amsterdam,The Netherlands,1998:418
  • 9Rudlof S,Koppen M.Stochastic hill climbing by vectors of normal distributions/ /Proceedings of the 1st Online Workshop on Soft Computing (WSC1).Nagoya,Japan,1996
  • 10Servet I,Trave-Massuyes L,Stern D.Telephone network traffic overloading diagnosis and evolutionary computation techniques//Proceedings of the 3rd European Conference on Artificial Evolution (AE'97).Nimes,France,1997:137

同被引文献100

引证文献9

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部