期刊文献+

一种基于Monte Carlo滤波的对POMDPRS系统性能的改进

Performance Promotion for POMDPRS Based on Monte Carlo Filter
下载PDF
导出
摘要 规划是人工智能研究的一个重要方向,具有极其广泛的应用背景.POMDPRS是一种结合了PRS的持续规划机制、POMDP的概率分布信念模型和极大效用原理的持续规划系统.它具有较强的对动态不确定性环境的适应能力.但是在大状态空间下的信念更新是其作为实时系统的瓶颈.该文试图将Monte Carlo滤波引入POMDPRS,从而达到降低信念更新的复杂度的目的,满足系统实时性的要求. Planning is a main research direction in artificial intelligence and has widely application background. POMDPRS is a continual planning system which combines the continual planning mechanism of PRS, the probabilistic distribution belief model and the maximum utility principle of POMDP, so that it gains stronger abilities of adapting to dynamic nondeterministic environments. However, belief updating is the bottleneck of planning performance in big state space. This paper introduces the Monte Carlo filter into POMDPRS to reduce the complexity of its belief updating, so that it can meet the requirement as a real-time system.
作者 李响
出处 《计算机学报》 EI CSCD 北大核心 2007年第6期999-1004,共6页 Chinese Journal of Computers
关键词 POMDPRS 信念更新 MONTE Carlo滤波 POMDPORS belief update Monte Carlo filter
  • 相关文献

参考文献17

  • 1Procedural reasoning system:User's guide.Artificial Intelligence Center,SRI International:Technical Report,2001
  • 2d'Inverno M,Kinny D,Luck M,Wooldridge M.A formal specification of dMARS//Singh et al,eds.Proceedings of the 4th International Workshop on Agent Theories,Architectures,and Languages (ATAL'97).LNAI,Springer,1998,1365:155-176
  • 3Lee Jaeho,Huber Marcus,Durfee Edmund,Kenny Patrick.UM-PRS:An implementation of the procedural reasoning system for multirobot applications//Proceedings of the AIAA/NASA Conference on Intelligent Robots in Field,Factory,Service,and Space (CIRFFSS ' 94).Houston,Texas,1994:842-849
  • 4Busetta Paolo,Ronnquist Ralph,Hodgson Andrew,Lucas Andrew.JACK intelligent agents-components for intelligent agents in Java.Agent Oriented Software Pty.Ltd,Melbourne,Australia:Technical Report AOS TR9901,1998
  • 5Huber Marcus.JAM:A BDI-theoretic mobile agent architecture//Proceedings of the 3rd International Conference on Autonomous Agents (Agents'99).Seattle,1999:236-243
  • 6Kaelbling L P,Littman M L,Cassandra A R.Planning and acting in partially observable stochastic domains.Artificial Intelligence,1998,101(1-2):99-134
  • 7Murphy K.A survey of POMDP solution techniques.Berkeley U.C.:Technical Report,2000
  • 8Cassandra A R.A survey of POMDP applications//Michael Littmann ed.Working Notes:AAAI Fall Symposium on Planning with Partially Observable Markov Decision Processes,AAAI.Orlando,Florida,1998:17-24
  • 9Cassandra A,Littman M,Zhang N.Incremental pruning:A simple,fast,exact method for partially observable Markov decision processes//Proceedings of the 13th Annual Conference on Uncertainty in Artificial Intelligence (UAI-97).San Francisco,CA,1997:54-61
  • 10Zhang N L,Zhang W.Speeding up the convergence of value iteration in partially observable Markov decision processes.Journal of Artificial Intelligence Research,2001(14):29-51

二级参考文献17

  • 1陈小平.国际机器人足球(RoboCup)最新进展[J].机器人技术与应用,2001,(1):25-28.
  • 2Hendler J.A., Tate A., Drummond M.. AI planning: Systems and techniques. Artificial Intelligence Magazine, 1990, 11(2): 61~77
  • 3Madani O., Hanks S., Condon A.. On the undecidabilistic planning and related stochastic optimization problems. Artificial Intelligence, 2003, 147(1~2): 5~34
  • 4Erol K., Hendler J., Nau D.S.. HTN planning: Complexity and expressivity. In: Proceedings of the 12th National Conference on Artificial Intelligence (AAAI-94),Seattle,1994,1123~1128
  • 5Ingrand F.F., Georgeff M.P., Rao A.S.. An architecture for real-time reasoning and system control. IEEE Expert, 1992, 7(6): 33~44
  • 6Wooldridge M.. A logic of BDI agents with procedural knowledge. In: Proceedings of the 2nd ModelAge Models of Agents, Sesimbra, Portugd, 1996
  • 7Kaelbling L.P., Littman M.L., Cassandra A.R.. Planning and acting in partially observable stochastic domains. Artificial Intelligence, 1998, 101: 99~134
  • 8Cassandra A.R.. A survey of POMDP applications. In: Proceedings of AAAI Fall Symposium on Planning with Partially Observable Markov Decision Processes, 1998, 17~24
  • 9Cassandra A., Littman M., Zhang N.. Incremental pruning: A simple, fast, exact method for partially observable Markov decision processes. In: Proceedings of the 3th Conference on Uncertainty in Artificial Intelligence, San Mateo, 1997, 54~61
  • 10Zhang N.L., Zhang W.. Speeding up the convergence of value iteration in partially observable Markov decision processes. Journal of Artificial Intelligence Research, 2001, 14: 29~51

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部