摘要
设(S,,m)是一个可分概率空间,E是复的可分Banach空间,h:S→S是(S,,m)上的保测变换,X:S→E是非零的Borel可测函数,T是E上的有界可逆线性算子.假定X(-h(·))=TX(·),a.e〔m〕.就称T是h的特征算子,X是h的特征函数.证明了若E是type-2空间,那么T表示为保测变换h的特征算子且h的特征函数为平方可积的充要条件是存在正定对称算子R:E→E。
If E is a complex separable type-2 Banach space,T is an invertible linear operator on E , then[KG*3/5]the following areequivalent: (a) T satifies the eigenoperator equation X(h(·))=TX(·),a.e m where h is a measure preserving transformation in a separable probability space (S,,m) and X:S→E is not identically 0 square integrable function.(b) there exist a positive symmetric operator R:E →E: such that TRT =R and the square root of R is 2 absolutely summing.
出处
《东北师大学报(自然科学版)》
CAS
CSCD
1997年第1期10-13,共4页
Journal of Northeast Normal University(Natural Science Edition)
关键词
保测变换
特征算子
概率测度
概率空间
eigenoperator
measure preserving transformation
type 2 space
Gaussian measure
2 absolutely summing operator
posltlve symmetric operator
covariance operator.