期刊文献+

一种提高图像无损压缩效率的方法

A method of improving the lossless image-compression
下载PDF
导出
摘要 非自然图像的直方图一般具有“稀疏”性,现有的无损压缩方法并未完全利用这种特性,因此压缩效果不太好。本文提出了一种通过调整直方图的预处理技术来提高无损压缩性能,主要是对直方图排序并利用领域像素分布来调整原始图像,使原始图像在统计意义上变得“平滑”些,利于提高无损压缩的压缩比。本方法只对原始图像进行预处理,并不改变现有压缩算法技术,因此具有很好的适应性,实验结果证明这种预处理方法是有效的。 the histogram of no-natural image often is sparse, it is not exploited with efforts in the existing image lossless compression. This paper presents a preprocessing technique to exploit the sparse histogram of no-natural image for improving the lossless compression effects. Through sorting and adjusting the histogram, the processed image can become more smooth, this is advantage for lossless compression. The presented method is only to preprocess image, without any other changes to existing codec, so it is suitable for more circumstance.
出处 《电路与系统学报》 CSCD 北大核心 2007年第3期121-123,120,共4页 Journal of Circuits and Systems
基金 国家"863"资助项目(2003AA602250-2) CNGI-04-12-2A 教育部重点项目(106041)
关键词 图像编码 无损压缩 直方图 image coding lossless compression histogram
  • 相关文献

参考文献5

  • 1Armando J Pinho.Preprocessing techniques for improving the lossless compression of images with quasi-sparse and locally sparse histograms[A].Proc of the IEEE Int Conf on Multimedia and Expo,ICME-2002[C].Lausanne,Switzerland,2002-08.633-636.
  • 2Paulo J S G Ferreira,Armando J Pinho.Why Does Histogram Packing Improve Lossless Compression Rates[J].IEEE Signal Processing Letters,2002,9(8):259-261.
  • 3Armando J Pinho.On the impact of histogram sparseness of some lossless image compression techniques[A].Proc of the IEEE Int Conf on Image Processing,ICIP-2001[C].Thessaloniki,Greece,2001-10,3:442-445.
  • 4Armando J Pinho.An online Preprocessing Technique for improving the lossless compression of images with sparse Histograms[J].IEEE Signal Processing Letters,2002,9(1):5-7.
  • 5Bruno Carpentierl,Marcelo J Weinberger,Gradiel Seroussl.Lossless Compression of Continuous-Tone Images[J].Proceedings of the IEEE,2000,88(11):1797-1809.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部