摘要
第二类超Cartan域(也称为第二类Cartan-Hartogs域)为:YⅡ(N,p;k)={w∈CN,Z∈RⅡ(p):‖w‖2k<det(I-ZZT)}(k>0),其中RⅡ(p)为华罗庚意义下的第二类Cartan域;ZT表示Z的共轭和转置;det表示行列式;N,p,k都是自然数.证明在第二类超Cartan域上,对于Bergman度量下平方可积调和(r,s)形式空间,有Hr2,s(YⅡ(N,p;k))=0,r+s≠N+p(p+1)2.
The super-Cartan domain of the second type is: YⅡ(N,p;k)={w∈C^N,Z∈RⅡ(P):‖w‖^2k〈det(I-ZZ^T)}(k〉O), where RⅡ(p) denotes the Cartan domains of the second type in the sence of Hua, respectively. Z^T denotes the conjugate and transposed matrix of Z, "det" denotes "determinant" and N,p,k are positive integers. In this paper, it is proved that the space of square integrable harmonic (r,s)-form is vanished relative to the Bergman metric for r+s≠N+p(p+1)/2 on the super-Cartan domain of the second type in C^N+p(p+1)/2 .
出处
《徐州师范大学学报(自然科学版)》
CAS
2007年第2期13-18,共6页
Journal of Xuzhou Normal University(Natural Science Edition)
基金
国家自然科学基金资助项目(10171068)
北京市自然科学基金资助项目(1012004)