期刊文献+

第二类超Cartan域上的消没定理 被引量:1

Vanishing Theorem on Super-Cartan Domain of the Second Type
下载PDF
导出
摘要 第二类超Cartan域(也称为第二类Cartan-Hartogs域)为:YⅡ(N,p;k)={w∈CN,Z∈RⅡ(p):‖w‖2k<det(I-ZZT)}(k>0),其中RⅡ(p)为华罗庚意义下的第二类Cartan域;ZT表示Z的共轭和转置;det表示行列式;N,p,k都是自然数.证明在第二类超Cartan域上,对于Bergman度量下平方可积调和(r,s)形式空间,有Hr2,s(YⅡ(N,p;k))=0,r+s≠N+p(p+1)2. The super-Cartan domain of the second type is: YⅡ(N,p;k)={w∈C^N,Z∈RⅡ(P):‖w‖^2k〈det(I-ZZ^T)}(k〉O), where RⅡ(p) denotes the Cartan domains of the second type in the sence of Hua, respectively. Z^T denotes the conjugate and transposed matrix of Z, "det" denotes "determinant" and N,p,k are positive integers. In this paper, it is proved that the space of square integrable harmonic (r,s)-form is vanished relative to the Bergman metric for r+s≠N+p(p+1)/2 on the super-Cartan domain of the second type in C^N+p(p+1)/2 .
作者 杨铮 苏简兵
出处 《徐州师范大学学报(自然科学版)》 CAS 2007年第2期13-18,共6页 Journal of Xuzhou Normal University(Natural Science Edition)
基金 国家自然科学基金资助项目(10171068) 北京市自然科学基金资助项目(1012004)
关键词 第二类超Cartan域 BERGMAN度量 消没定理 super-Cartan domain of the second type; Bergman metric; vanishing theorem
  • 相关文献

参考文献8

  • 1Donnelly H,Fefferman C. L2-cohomology and index theorem for the Bergman metric[J]. Ann of Math, 1983,118 (3):593.
  • 2Ohsawa T,Takegoshi K. On the extension of L2 holomorphic functions[J]. Math Z,1987,195(2).
  • 3Donnelly H. L2 cohomology of pseudoconvex domains with complete Kaehler metric[J]. Michigan Math J, 1994,41 (3):433.
  • 4Donnelly H. L2 cohomology of the Bergman metric for weakly pseudoconvex domains[J]. Illinois J Math, 1997,41 (1):152.
  • 5刘国华.广义Thullen域上的上同调群消灭定理[J].同济大学学报(自然科学版),2001,29(6):692-695. 被引量:1
  • 6Yin Weiping. The Bergman kernel functions on four types of Super-Cartan domains[J]. Chinese Science Bulletin:A, 1999,44(21) :1947.
  • 7殷慰萍,mailhost.cnu.edu.cn或wyin,sun.ihep.ac.cn..第二类超Cartan域的Bergman核函数[J].数学年刊(A辑),2000,1(3):331-340. 被引量:20
  • 8Yin Weiping, Zhao Zhengang. Completeness of the Bergman metric[J]. Advances in Math, 2000,29 (2) : 189.

二级参考文献14

  • 1[1]Donnelly H, Fefferman C. L2 cohomology and index theorem for the Bergman metric[J ]. Ann of Math, 1983,118:593- 618.
  • 2[2]Donnelly H. L2 cohornology of pseudoconvex domains with complete Kahler metric[J]. Michigan Math J, 1994,41:433 - 442.
  • 3[3]Gromov M. Kahler hyperbolocity and L2 Hodge theory[J ]. Differential Geom, 1991,33: 263 - 292.
  • 4[4]Blocki Z, Pflug P. Hyperconvexity and Bexgman completeness[J]. Nagoya Math J, 1998,151: 221 - 22.
  • 5[5]Donnelly H. L2 cohomology of the Bergman metric for weakly pseudoconvex domains[J]. Illinois J of Math, 1997,41:152 - 160.
  • 6[6]D'Angelo J.A note on the Bergrman kernel[J].Duke Math, 1978,45:259- 265.
  • 7Yin Weiping,Complex Vaiables,1997年,37卷,351页
  • 8Lu Qikeng,The new results of the classical manifolds and the classical domains,1997年
  • 9Yin Weiping,中国科学.A,1992年,7期,680页
  • 10Yin Weiping,Sci Sin A,1988年,31卷,6期,675页

共引文献19

同被引文献11

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部