期刊文献+

Helmholtz方程的一类最小二乘混合有限元解法

A Least-Squares Mixed Finite Element Method for the HELMHOLTZ Equation
下载PDF
导出
摘要 通过将Helmholtz方程变化为一阶线性系统,并考虑此线性系统余量与真解的关系,给出了对方程的一类最小二乘混合有限元方法。最小二乘混合元方法可以避免标准混合元格式中的限制条件,从而可以在更广泛的范围内选择有限元空空间。文章提出了解决问题的有限元格式,证明了离散解的存在性唯一性,并给出了误差的H(div),H1模估计。 This paper develops a mixed least-squares finite element method for the Helmholtz equation through casting the equation into a first order system, then considering the fact that the true solution minimize the remains of the system. A mixed LSM could skip the conditions which are required for a standard mixed method, so we could choose appropriate finite element spaces more freely. This paper gives the finite element formula and the proof of the existence and uniqueness of the discrete solution. Error estimates both in H(div), H^1 norm are achieved.
作者 柏自强
出处 《青岛大学学报(自然科学版)》 CAS 2007年第1期26-30,共5页 Journal of Qingdao University(Natural Science Edition)
关键词 最小二乘 有限元 混合元 HELMHOLTZ方程 least-square finite element mixed method helmholtz equation
  • 相关文献

参考文献7

  • 1Chang C L.A Least-Squares Finite Element Method for the Helmholtz Equation[J].Comp.Methods Appli.Mech.& Engi.,1990,83:1-7.
  • 2Wendland W L.Elliptic Systems in the Plane[M].London:Pitman,1979.
  • 3Dikanskij A S.Conjugate Problems of Elliptic Differential and Pseudo-Differential Boundary Value Problems in a Bounded Domain[J].Math.USSR-Sb,1973,20:67-83.
  • 4Bochev Pavel B,Gunzburger Max D.Finite Element Methods of Least-Squares Type[J].SIAM Rev.1998,(4):789-837.
  • 5Pehlivanov.Error Estimates for Least-Squares Mixed Finite Elements[J].RAIRO Math.Model & Numer.Anal.1994,28:499-516.
  • 6Pehlivanov A I,Carey G f,Lazarov R D.Least-Squres Mixed Finite Element for Second-Order Elliptic Problems[J].SIAM J.Numer.Anal.1994,31:1368-1377.
  • 7Ciarlet P G.The Finite Element for Elliptic Problems[M].Amsterdam,New York,Oxford,North-Holland Publishing Company.1978.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部