期刊文献+

非凸非光滑规划的最优性与对偶性 被引量:6

Optimality and Duality of Nonconvex and Nonsmooth Programming
下载PDF
导出
摘要 利用Clarke广义梯度定义的Lipschitz函数的广义凸性条件,首先讨论了非凸非光滑多目标规划的最优性,建立了其充分性条件与Kuhn-Tucker型必要条件;然后讨论了非凸非光滑单目标规划的广义Mond-Weir型对偶,建立了相应的弱对偶定理、强对偶定理及逆对偶定理. By means of the generalized convexity conditions for Lipschitzs function defined by Clarke generalized gradient, the optimality for nonconvex and nonsmooth multiobjective programming is discussed. The sufficient conditions and Kuhn Tucker type necessary conditions are established. The generalized Mond Weir type duality for nonconvex and nonsmooth single objective programming is also discussed with the weak duality theorem, strong duality theorem and converse duality theorem established. The results cover many already known optimality conditions and duality theorems
出处 《华中理工大学学报》 CSCD 北大核心 1997年第1期99-102,共4页 Journal of Huazhong University of Science and Technology
关键词 最佳化 最优性 对偶性 非凸规划 非光滑规划 Clarke generalized gradient generalized convexity condition generalized Mond Weir type duality efficient solution optimal solution
  • 相关文献

参考文献3

二级参考文献3

共引文献28

同被引文献69

引证文献6

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部