摘要
利用Clarke广义梯度定义的Lipschitz函数的广义凸性条件,首先讨论了非凸非光滑多目标规划的最优性,建立了其充分性条件与Kuhn-Tucker型必要条件;然后讨论了非凸非光滑单目标规划的广义Mond-Weir型对偶,建立了相应的弱对偶定理、强对偶定理及逆对偶定理.
By means of the generalized convexity conditions for Lipschitzs function defined by Clarke generalized gradient, the optimality for nonconvex and nonsmooth multiobjective programming is discussed. The sufficient conditions and Kuhn Tucker type necessary conditions are established. The generalized Mond Weir type duality for nonconvex and nonsmooth single objective programming is also discussed with the weak duality theorem, strong duality theorem and converse duality theorem established. The results cover many already known optimality conditions and duality theorems
出处
《华中理工大学学报》
CSCD
北大核心
1997年第1期99-102,共4页
Journal of Huazhong University of Science and Technology
关键词
最佳化
最优性
对偶性
非凸规划
非光滑规划
Clarke generalized gradient
generalized convexity condition
generalized Mond Weir type duality
efficient solution
optimal solution