期刊文献+

数学形态滤波的细胞神经网络实现方法

Mathematical Morphology Using Cellular Neural Network
下载PDF
导出
摘要 给出了细胞神经网络(CNN)在数学形态学中的应用.通过对CNN状态方程的修改,可使CNN并行、实时地实现数学形态滤波,其实现速度与结构元的大小无关.给出了有关改进CNN的稳定性及动态特性分析以及在腐蚀、膨胀及结构开。 An application of cellular neural network (CNN) in mathematical morphology is presented.By modifying its original state equation,CNN is made to be capable of carrying out the morphological operation in real time,in which the processing speed is regardless of the morphological structuring element.The theorems concerning the dynamic range and steady state are given while the computer simulating results are used to illustrate the morphological dilation,erosion,open and close on binarized images.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 1997年第3期33-36,共4页 Journal of Shanghai Jiaotong University
基金 "攀登计划"基金 国家自然科学基金
关键词 细胞神经网络 数学形态学 数学形态滤波 cellular neural network (CNN) mathematical morphology dilation erosion open close
  • 相关文献

参考文献4

  • 1Chua L O,IEEE Trans on Circuits & System,1990年,38卷,11期,1332页
  • 2Zou F,IEEE Trans on Circuits & System,1990年,38卷,6期,675页
  • 3Chua L O,IEEE Trans on Circuits & System,1988年,35卷,10期,1257页
  • 4Chua L O,IEEE Trans on Circuits & System,1988年,35卷,10期,1273页

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部