摘要
考虑具有n个变时滞的泛函微分方程x′(t)+ni=1qi(t)x(t-σi(t)),t≥t0,其中qi(t),σi(t)∈C([t0,∞),(0,∞)),i=1,2,…,n.在时滞σi(t)(i=1,2,…。
Consider the differential equatin with delayx′(t)+ni=1q i(t)x(t-σ i(t))=0,t≥t 0,where q i(t),σ i(t)∈C([t 0,∞),(0,∞)),i= 1,2,… ,n. In this paper, the Hunt_Yorke theorem and conjecture are proved when σ i(t)(i =1,2,…, n ) are unbounded. These results generalize the conclusions in and , and improve the corresponding results in .
出处
《曲阜师范大学学报(自然科学版)》
CAS
1997年第1期38-44,共7页
Journal of Qufu Normal University(Natural Science)
关键词
泛函微分方程
振动性
时滞微分方程
解
functional differential equation delay ineqality oscillation decreasing chain of subsequence