摘要
设n1≤n2≤…≤nk是正整数,D=Cn1×Cn2×…Cnk。是有向圈的直积.在本文中,我们证明了如果ni|nk(1≤i≤k—1),则D含有哈密根图.当n1=n2=…=nk时,我们进一步得到D含有[k/2]个弧不交的哈密顿圈.作为副产品,我们推出当是哈密顿有向图时×也是哈密顿有向图.
Letn1≤ n2≤… ≤nk be some positire integers. D= Cn1 X C2 X… X Cnk is the cartesian product of directed circuits. In this paper we prove that D has hamiltonian circuits if ni |nk (1≤i≤k 1). When n1 =n2 = … =uk, we confirm that D bas [k/2] arc disjoint hamiltonian circuits, As a byproduct, we deduce that is an hamiltonian digraph if is an hamiltonian digraph.
出处
《应用数学》
CSCD
1997年第1期46-50,共5页
Mathematica Applicata