摘要
本文我们研究下列方程:Δ2u=|u|p-1u+f(x,u)x∈Ωu=0x∈ΩΔu+α(x)uv=0x∈Ω的非平凡解存在性,这里p=(n+4)/(n-4),f(x,u)是|u|p-1u在无穷远处的低阶扰动项,f(x,0)=0,并且。
In this paper we study the existence of nontrivial solutions to the following Navier problem: Δ 2u=|u| p-1 u+f(x,u)\ x∈Ω u=0 x∈Ω Δu+α(x)uv=0\ x∈Ω where p=(n+4)/(n-4),f(x,u)is a lower order perturbation of |u| p-1 u at infinity,f(x,0)=0.Then we obtain a general existence theorem.
出处
《南昌大学学报(理科版)》
CAS
1996年第4期376-383,共8页
Journal of Nanchang University(Natural Science)
关键词
临界指数
非平凡解
重调和方程
NAVIER边值问题
critical sobolev exponent,biharmonic operator,critical point,nontrivial solution,Navier boundary value conditions