摘要
本文计算了N(m,s;2v)与n(m,s,t,r1,…,rt;2v).并以推论形式得到Sp2v(Z/pkZ)的阶.N(m,s;2v)表示环Z/pkZ上2v维向量空间V2v(Z/pkZ)上的指数为s的m维子空间的个数;n(m,s,t,r1,…,r1,2v)是秩为m,不变因子为(r,s,t,r1。
Denote by N (m,s;2v) and n ( m,s,t,r 1,…,r t;2v) , respectively, the number of m dimensional subspaces in v 2v (Z/P kZ) with index s and the number of m by 2 v matrices its rank is m with invariants factors ( r,s,t,r 1,…,r t ).In the present paper,we compute N(m,s;2v )and n(m,s,t,r 1,…,r t;2v) , and also get the order of S p 2v (Z/P kZ ) by a corollary form.
出处
《数学杂志》
CSCD
1997年第2期214-220,共7页
Journal of Mathematics
基金
河北省自然科学基金
关键词
局部环
辛几何
计数定理
有限环
Local ring,symplectic geometry,anzahl theorems.