摘要
本文研究了Banach空间随机微分方程的初值问题的样本最大、最小解的存在性.利用熟知的关于多值映射的可测选择结果,得到了两个此类问题的样本最大。
In this paper, we studied the existence of sample maximal and minimal solutions of stochastic differential equations in Banach spaces. By means of a known result about measurable selections of multivated maps, two existence theorem on the sample maximal and minimal solutions of stochostic Cauchy problems are obtained.
出处
《数学杂志》
CSCD
1997年第1期33-40,共8页
Journal of Mathematics
基金
国家自然科学基金
关键词
随机微分方程
存在性
巴拿赫空间
样本解
stochastic differential equatious, sample maximal and minimal solutions, existence